AD-A108 589  VERAC INC SAN DIEGO CA F/6 15/3.1
AN ANALYSIS OF MMCS NETWORK ARCHITECTURES TO SUPPORT THE DATA P==gETC(U)
DEC 80 J'C TIERNAN DASG6U~B0-C=0017

UNCLASSIFIED R=008-80 .




c r
E_ ]
[l
_ N
“°° " o

e mu; |

MICROCOPY RESOLUTION TEST CHART
. .
SUONA, il 5OTANDER] L D e o A 1
¢

L




4901 Morena Bivd. Suite 209, Son Diego, CA 92117 (714) 272-1360

DISTRIBUTION STATEMENT A

Approved for public release
Distribution Unlimited

VERAC

incorporated

81 12 14118




DISTRIBUTION STATEMENT A

VERAC /

DTIC |
_ ELEC i,

0EC 1 5 1931 i
AN ANALYSIS OF :

N

Losi-

MMCS NETWORK ARCHITECTURES H
TO SUPPORT THE

DATA PROCESSING REQUIREMENTS FOR

SITE DEFENSE
R-008-80

16 December 1980

Tne views, opinions, 2-.¢/9r findings cortained in lmis ~epirt are
trage of the author{s) a~2 3n3uld ndt be construed as an cffigial
Casartmant of tne Army pOsition, policy, or decision, uriess so
Gesigrated by cthe: officia’ ogocumentation.

Exzept as provicec by tna (:3ntractor Uate Recuizz-enls List, DD

Form 1423, nzreof, the cistringtion of any contract repdel in any staae
cf cavelgprant or Compietidn is prohibited without the 22droval of tne
forzeacting Officer,

Submitted to:

Commander
Ballistic Missile Defense Systems Command

Attention: BMDSC-HUL 1
Prepared by: d‘.’

DODA Code: W 31 RPD
Haro}d7J Z;’};
/" // //

PO Box 1500
Huntsv1]1e Alabama 35807
Charles L. Moref1e1d
CowTRAT JPASE60- §0-C—00/7

“James C. Tiernan %

Approved by:

4901 Morena Boulevard. Suite 209

—A-pprovod for public release;

San Diego, California 92117
714/272-1360

Distribution Unlimited

V




l [

PRELIMINARY NOTES

_Accesshn‘}'o‘,.
I ¥ris

Ay

[SnE N
ERY ¢

VERAC

incocporated

attisdbe atai




PREFACE

This document is provided to the U.S. Army Ballistic Missile
Defense (BMD) Systems Technology Program (STP) Office in fulfilliment of
- part of the documentation requirements associated with the Analysis of
Alternative Distributed Network Architectures, a supporting effort for
the Advanced Data Processing Subsystem Investigations (ADPSI).

The purpose of this document is to present the findings of this
study, to indicate the expected critical design constraints imposed by
capabilities of computer and communications hardware to be available in
1981-82, and to identify critical computer subsystem design issues.
Further, the Processing Architecture Evaluation Methodology (PAEM) and
the supporting computer simulation tool, Processing Architecture

, Evaluation Simulation (PAES) which were developed to support
, architecture design and analysis are described here.

QD YERAS

| _—




, -

TABLE OF CONTENTS

Section

EXECUTIVE SUMMARY. . & & ¢ v v 4 v v v v v v e e v s e e e s

1.0 INTRODUCTION. & v & 4 4 o v o v v o o v o 0 o s o o o o o

2.0 PAEM/PAES &« & v v ot s s e e e e e e ey e e e e e e
2.1 Processing Architecture Evaluation. . . . . . . « ..
2.2 The Nature of PAEM/PAES . . . . . . ¢« « v ¢ ¢« v ¢ o s

2.3 Application of PAEM/PAES to Terminal Defense
Data Processing Subsystem Analysis and Design

2.3.1 Processing Modeling. . . . . . . . . . . e e
2.3.2 Evaluation of Architectural Options. . . . . .

3.0 PROCESS DESCRIPTION AND ANALYSIS. . . . . . .. e v e

3.1 Functional Querview . . . . &+ + « ¢ o v ¢ v 2 v » o »
3.2 Functions Represented by the Process Definition . . .
3.3 functional Decomposition. . . + ¢« « v v v v s o o & &
3.4 Process Evolution . .« & v v v v ot 0t b v e e e e v
3.5 Response Time Requirements. . . .« « v v ¢ o « o « & «
3.6 Use of PAES in Process Definition and Analysis. . . .

3.6.1 Verification of Process Model. . . . . . . ..
3.6.2 Process Loading Analysis . . « « ¢« ¢ « v « « .

4.0 EVALUATION OF NETWORK ALTERNATIVES. . . « v v & ¢ ¢ &« o« « &
4,1 Evaluation Procedure. . . . &+ v & ¢ v ¢ « & o ¢ & & »

4.2 Evaluation of the Centralized Architecture. . . . . .
4,3 Evaluation of the Thread Architecture . . . . . . . .

VERAC

lncocporated

Page

ES-1

2-1

2-2
2-3

2-5

2-5
2-8

3-1
3-5
3-5
3-10
3-14
3-17

3-17
3-25

4-1

3-1
4-5
4-7

i1




TABLE OF CONTENTS
(concluded)

. Section Page
4.4 Design and Evaluation of the Hybrid Architecture. . . . 4-11 |

4.4.1 Functional Partitioning. . . . . ... .. ... 4&l1
4.4.2 PAES Evaluation of CPU Requirements. . . . . . . 4-11
4.4.3 RRA and Control Node . . . . ¢« « ¢« ¢« ¢ « o « o« « &=15
8.8.8 The RRBUS o & v v v v o v v e v e o e e e, 418
4.4.5 THREAD Processor . . « « &+ « o o o o o o « o o« » 4-19
4,4.6 Pulse Request (PR) Bus « « « « ¢« v o« o ¢« ¢ o« « « 424
4.4.7 SCHEDULING ProcCessor « « « « « o « o o o« o o« » o 8<26
4.4.8 Memory Processing/Database Structure . . . . . . 4-26

5 .0 CONCLUSIONS L] L] . » - L] L] L] L] Ll . L - . L] . L L] - L] L] L] L2 L] . 5.1
RE FERENCES L ] - [ . L . L] L] L] . L] . L] L] . - . - . . * * * L] - L] . L] 5—4
APPENDIX A: Detailed Process Description. . . . . . .. B . | 4

APPENDIX B: PAES: Process Architecture Evaluation Simulation
Approach and Capabilities . . . + « ¢« ¢« ¢ ¢« ¢« ¢ ¢« « o« B-l

APPENDIX C: Detailed Architecture Evaluations . . . « ¢« « ¢« « « . C-1

APPENDIX D: CoOSt SUMMArY. « ¢ « ¢ o o o o ¢ o« o o ¢« o o o« o« o o « D1

7

QYERAS

iv




Figure No.

ES-1
£S-2
£S-3
£S-4

2.2-1
2.3-1
2.3-2
2.3-3
2.3-4
3.1-1

3 02-1
3.3-1

3.3-2
3.4-1
3.4-2
3.6-1

3.6-2
3.6-3
3.6-4

3 06‘-5

3.6-6
3.6-7

3.6-8
3.6-9
3.6-10

LIST OF FIGURES

PAES - Processing Architecture Evaluation Simulation

Process Overview

Network Synthesis and Analysis Procedure
Recommended Architectural Approach for the BMD
Site Defense Distributed Processor

PAES - Processign Architecture Evaluation Simulation

Role of PAEM/PAES in Process Definition

Characterization of a PRIMITIVE

Use of PAES in Architecture Evaluation

Network Synthesis and Analysis Procedure

Unit and Module Functions in the Terminal Defense
System (Underiay)

Process Overview

PRIMITIVE ANGRP, Illustrating Two Mechanizims

For Representing Data Access and Transfer

Site Defense Process Model

Process Evolution '

SIV Returns Time Histories For Two Scenarios

Accumulated Number of Objects Processed at
Successive Stages

Track Initiate Thread Port-to-Port Response Times

Last TI Thread Port-to-Port Response Time

Normal Track Thread During Passive Discrimination
Port-to~Port Response Time

Normal Track Thread During Intercept Planning
Port-to~Port Response Time

Active Descrimination Thread Port-to-Port Time
Interceptor Guidance and Track Thread
Port-to-Port Response Time

TI Returns Processing Load

0T2 Returns Processing Load

Load Phasing for the Singie-Spike Scenario

VERAC

£s-4
€S-6
€s-7

£S-9
2-4
2-6
2-7
2-9
2-11

3-2
3-6

3-9

3-11
3-12
3-15

3-18
3-19
3-20

3-21

3-22
3-23

3-24
3-27
3-28
3-29




PG

e e e et et ey e

Figure No.

3.6-11

4.1-1
4.2-1
4.3-1
4.3-2

4.4-1

4.4-2

4.4-3

4.4-4

4.4-5
4.4-6

LIST OF FIGURES
(concluded)

Thread Contributions to Peak Loading
(Double~Spike Scenario)

Network Analysis Procedure

Cpu Utilization for Centralized Architecture

Thread Architecture

Allocation of PRIMITIVES to NODES of the
Thread Architecture

Recommended Architectural Approach for the
BMD Site Defense Distributed Processor
Allocation of Primitives to Nodes of the
Hybrid Architecture

The RRA and CONTROL NODE Structure

Data Flow for Pulse Return Processing
Correlation Processing

Discrimination Processing

VERAC

incorporated

.-n-n-ﬁiin-_...........ns,.

3-34
4-1
4-6
4-8

4-9

4-12

4-13
4-16
4-21
4-23
4-25




Table No.
ES-1

£S-2

3.4-]
3.5-1
3.6-1
3.6-2
4.2-1
4.3-1
4.4-1
4.4-2

B Al 4 o' |

VERAC

incorporated

LIST OF TABLES

Evaluation Results for the Centralized and

Thread Architectures

Evaluation Results for the Hybrid Architecture
Process Evaluation

Port-to-Port Thread Definitions

Thread Reponse-Time-Driven Cpu Requirements
Thread Loading-Time-Driven Cpu Requirements

Cpu Requirements for the Centralized Architecture
Cpu Requirements for the Thread Architecture

' Cpu Requirements for the Hybrid Architecture

Bandwidth Reguirements at 2000 pps for the RR Bus

€S-8
ES-11
3-13
3-16
3-13
3-32
4-7
4-10
4-14
4-18

vii




D YERAC .

EXECUTIVE SUMMARY

The U.S. Army Ballistic Missile Defense (BMD) Systems Technology
Program (STP) office supports a program to maintain and update
technologies critical to the deployment of a BMD system. One part of
that program, the Advanced Data Processing Subsystem Investigation
(ADPSI), has been directed toward the identification of key technical
issues relating to the data processing subsystem, and the resolution of
those technical issues that would be time-critical in a full scale
development. »

‘>As a part of the ADPSI effort, VERAC, Inc. has conducted a study of
alternative network architectures for a distributed data processing
(DDP) approach to implementation of the BMD Site Defense data processing
subsystem. This report is the Final Report documenting the activities
and conclusions reached in the study.

~ The purpose of the VERAC study has been to develop and evaluate
alternative distributed processing architectures for the BMD Site
Defense Application. A number of architectures were to be assessed in
this evaluation. These architectures include: (1) an advanced computer
with a Centralized control and memory Architecture; (2) a Thread
Architecture under study by McDonnel Douglas; and (3) a Hierarchical
Architecture. VERAC has developed a model of the functional process
supported by the Site Defense processor in order to perform the
evaluation of alternative architectures. A perferred architecture has

been identified.
S

s >\




PAEM/PAES

In order to meet the technical objectives of this study, VERAC
extended a previously developed simulation tool for network flow
analysis into a wholly new Processing Architecture Evaluation
Methodology (PAEM), with a supporting tool, the Processing Architecture
Evaluation Simulation (PAES). PAEM/PAES provides a highly disciplined
and extremely flexible approach to characterization, design and analysis
of centralized and distributed data processing systems. This approach
will have great utility beyond this study, and in particular can Support
future BMD work such as the LoAD program.

Developments in computer technology have introduced a new direction
in the design of dedicated data processing subsystems. With the
impending availability of processing elements with substantial power and
therefore applicability of DOP for Terminal Oefense missions, the

architectural design associated with the network of distributed

computers now is on a level with the software design.

The Processing Architecture Evaluation Methodology and the
supporting simulation tool, PAES, supports two stages of the DDP HW/SW
design process. Tha first stage is the definition of the process in
terms of the function to be supported, the environment (i.e., threat
scenario) and the requirements. PAEM supports this by providing a
formalized framework for representing the process. Further, the
simulation tool, PAES, provides an effective means of checking the
consistency of the functional process definition by exercising the
functional model in a realistic model of the dynamic environment. The

flexibility of PAES is a particularly important asset at this stage,
since a variety of process models and threat scenarios are easily
introduced for analysis.

PAEM/PAES can provide invaluable support to the second stage of
design in which functions are allocated to hardware elements and the -
architectural characteristics of the DDP system are specified. PAEM
provides a framework for specifying architectural elements (including

ES-2




gross computer characteristics, operating systems, bus protocols and
data base management techniques) in a fashion that pinpoints critical
design jssues. PAES provides an evaluation of a specific HW/SW design

as it would be expected to function in a realistic, dynamic environment.

PAEM/PAES fills an important gap in otherwise available analysis
tools. Analytic tools (e.g., static, queueing network models) and
static simulations, while being flexible and efficient to use, cannot
J reflect the critical congestion effects which actually occur in the
dynamic environment. The presently available tools which can provide
useful measures of performance in the dynamic environment are complex
simulations which are quite inflexible - requiring recoding to examine
substantial deviations in the process definition or in the DDP
architecture. These tools are also expensive to run. Thus, the ability
of these complex simulations to provide an effective HW/SW design aid is
severely limited. They are, however, valuable for final validation of
performance of a design because of their fidelity in performance
prediction.

PAES provides a dynamic simulation, yet retains flexibility in
application by depending upon a table-driven simulator whose table
elements constitute the definition of the process, scenario and
architecture. Run time efficiency derives from the flow approximatica
which is traded against performance prediction accuracy by the user. As
a result, PAES provides a means for rapidly assessing an alternative
design, and can, in fact, be integrated as an important aid in the
actual design process.

PAES itself is structured into three functional components
3 (i1lustrated in Figure ES-1.):

(1) Input Specification - The process, architecture, scenario,
and output reports required are separately specified.

Automated verification of structural consistency is provided
by this component of PAES.

I

QD YERAS




(2) Simulation - A deterministic, flow-oriented representation
of the processing of “work-units" operates on tables defined
by the Input Specification component. Process and
architectural effects are separately simulated. This
provides the basis for architecture-free process simulation.
The overall modularity makes additions of new architectural
effects modules relatively easy. This component generates
files as directed by the Report Specification.

(3) Report Generation - A User-interactive component produces
performance tables and plots from files generated by the
Simulation component.

The PAEM/PAES methodology has been applied to the BMD Site Defense
processor as summarized in the following.

[ 3
M NOOE 4
.
H
PROZESS SCENARLO H
SPECIFICATION DRIVER 1
T I tire rsec
B ] H
ARCHITECTURE ARCHITECTURE
SPECIFICATION EFFECTS
L"::> Q Queve: SV returms
SCERARID PRINITIVE .
SPECIFICATION FLOM tire {rsec) count
. 10 3.2
! 20 5.8
[———L—\ 30 6.2
A .
REPORT RECORD SYSTEM 0 8.4
SPECIFICATION ‘__slm—J—‘

NPyt REPORT
SPECIFICATION SIFULATION GENERATION

Figure ES-1. PAES - Processing Architecture Evaluation Simulation

ES-4




SITE DEFENSE PROCESS CEFINITION AND ANALYSIS

Existing software designs have been used in addressing the
functions to be supported. These designs are tied to the use of the CDC
7700 computer; as a result, many design aspects reflect CDC
7700-specific implementation considerations rather than the process
supported by the implementation. A prime example of this is the
partitioning of the software into tasks which collectively can be
effectively scheduled by TOS, the Tactical Operating System,

VERAC first undertook an effort to obtain a machine-independent
description of the BMD process. An overview of this process is
presented in Figure ES-2. This effort was an essential first step in

addressing DDP architecture design, and further, has yielded an
extremely useful characterization for subsequent related analyses, and,
ultimately, for design of the software on a DDP system.

This effort included the following steps: (1) an analysis of the
existing BMD task designs, particularly those which were actually
realized as code (radar interface, target and object tracking, and
discrimination), to obtain a characterization of task code structure
(functions, principal data structure, and timing models); (2) an
aggregation of tasks based upon associations necessary for principal
functional requirements (e.g., tasks on a processing thread were
generally put together); (3) a sequential decomposition of these
functons which ultimately yielded a set of PRIMITIVES, each of which is
a smallest, logically cohesive functional process unit. These
PRIMITIVES served as the basic units allocated in development of a
distributed processing architecture.

Performance requirements and design constraints have been obtained
from available documents. The principal requirements which have
significant impact upon architecture are (1) the "port-to-port" response
times associated with the processing of the various types of radar
returns, and (2) the throughput or total computer processing load
necessary to support all functions in selected scenarios. These
requirements served to guide the Process Definition.

VERAC

lacorporated

| 35

Nt ettt i ——




radar returns

l radar commands
<

< RADAR ‘ <
YV
Radar Returns Microscheduler
Assimilation A
YVVVVY Search Raster | Search rasters pool
Generation > Macroscheduler
MAAAN A
S/
returns
~ S/V Returns first TI pulse
- Processing request
new TI
TI \
returns
Tl pulse request
S TI Tracking Y g
>
new OT
o7
returns Y
N 0T Tracking oT pujse request
0D request
v
AD
returns - Object AD pulse request
' Discrimination
Intercept request
Y )
Intercept Planning first!iG pulse request
G
returns ¥ Intercept plan
G pulse request
> Intercept Control
Figure ES-2. Process Overview
ES-6
4 1
*"‘-“"“ it R S S ittt .

candidate pulse




NETWORK SYNTHESIS AND EVALUATION

Two previously developed concepts for hardware architectures were
evaluated - a representative Centralized Architecture and a Thread
Architecture devised by McDonnel-Douglas. The evaluation procedure
involving PAES is illustrated in Figure ES-3. The formal Process
Definition provided the basis for defining the Process Description and
Threat Scenario input segments for PAES. A third input segment was
defined corresponding to each of the two Candidate Computer
Architectures.

wISSION ANALYSIS
aND
FROCESS DEFINITION

PFYESS 1
DESCRIFTION
CvTIRTIVE
PAES Ev:;u:.D
PROCESSING ARCHITECTURE
EVALURTION SIMRLATION

OF 220MITELTLRES

ISEMTIFICATION
CT M 1vTRVED
2ETECTURE

CANTIDATE

T JER
i ARCNITECTURES t
! {
S |

Figure ES-3. Network Synthesis and Analysis Procedure

Sample results of the evaluation of these two architectures are
provided in Table ES-1. The results point out the increase in CPU
requirement which is associated with distribution of the processing load
to a set of computers dedicated to specific tasks, as is the case with
the Thread Architecture. Further, one sees that the Thread Architecture
requirements are more sensitive to the scenario.

The next step was tc make use of the process analysis and the
evaluation results for the Centralized and Thread Architectures to
synthesize an optimal architecture. This process led us to identify an
architecture of hybrid form.

VERAC

"B




- T———

Table ES-1. Evaluation Results for the Centralized
and Thread Architectures

CPU requirement (MIPS)*

Architecture | Single-Spike** Double-Spike***
Scenario Scenario

Centralized 47 .67 44 .94

Thread 62.17 54.01

* Application processing requirements plus allowance for operating
system overhead

** 140 total objects introduced in a single wave over 100 ms

*** 140 total objects introduced in two waves, each of 100 ms duration
and 1 second apart

THE HYBRID ARCHITECTURE

The recommended Hybrid Architecture is illustrated in Figure ES-4.
The principal features of this architecture are:

Computing Nodes

. Special purpose processor for (1) Radar Return Assimilation,
(2) control of the activity of the THREAD Processor, and (3}
control of the RR (radar return) bus (RRA)

° Unit Resource Manager processor (URM)

. Special purpose processor for Track Memory access and
update (MEM)

) Special purpose processor for Radar Pulse Scheduling and
control of the PR (pulse request) bus (SCHEDULING)

) A set of processors of identical architecture (the “"THREAD
Processors") to perform thread processing (track initiation

and update, discrimination, interceptor control).

€S-8

[— [




N8 ¥d ) \ sng ¥y

405532044 paINqLaIs|g asuafag 914§
QWg 3yl 404 Yoeouddy (esn3dajyouy papusunioddy ‘§-53 aunbig

¥0SS3J0¥d QvVIYHL t——p

T S D —

< > < >

< > < >

A .
08LN0D SNE ¢ 1081NOD SNG »
305539044 ¥0SS3004d

: NI INGIHIS NOTLVINWISSY
: 35Nd YVavY - NYNL3Y ¥VOVY

SO OGRONR0NOREIR RSO SO NN OOSOORROTORD

JIVIYIINI

405532034 /¥vavy

T-18~£TO~HI

A
104LN0D SNY ¥

405532044

QYERAS




———————y

The bulk of the processing is performed by the THREAD Processors.
Analysis has shown that this partitioning into four dedicated processors
and a multi-processor for various thread functions can in principal be
realized without incurring the increase in total CPU requirement

associated with the dedicated distributed computer organization of the
Thread Architecture.

An analysis of port-to-port response requirements reveals that most
of the thread processing can be accomplished with processors having .5
MIPS processing power. End game processing (interceptor control and
associated object tracking) would require 1.25 MIPS processors. Thus,
options for architectures of this generic form range from a "large®
number of "small" processors, up to one or a few "large" processors.
Further analysis, including costing, would resolve the choice of optimum
size thread processors.

Communication Buses

° RR (Radar Return) Bus structured as a parallel 3%o X 1
Megabit/sec channel under TDMA control, handling pulse
returns and track records for use by THREAD processors

. PR (Pulse Request) Bus structured as a parallel 32b X 1
Megabit/sec channel under demand responsive control

® RC (Resource Control) bus.

This organization of the necessary data transfers takes advantage of the
inherently uniform and predictable total loads, independent of

scenario. These buses can easily be designed using current technologies.

Evaluation of this Hybrid Architecture yielded nearly jdentical
results for CPU requirements as for the Centralized Architecture.
Including estimates for the control of the THREAD Processors and for bus
control, we obtained the estimates of CPU requirements provided in Table
ES-2.




Table ES-2. Evaluation Results for the
Hybrid Architecture

CPU Requirement (MIPS)

Single-Spike Double-Spike
Scenario Scenario
37.63 35.97

The differences, as compared to the results for the Centralized and
Thread Architectures given in Table ES-1, are due to: (1) the
(potential) efficiency of the multi-processor structure of the THREAD
processors in the Hybrid Architecture yields an e¢pplication requirement
nearly identical to that for the Centralized Architecture; (2) the clear
functional partitioning in the Hybrid Architectur=s would entail
substantially less operating system overhead.

QYERAS

Co=11




o

CONCLUSIONS

The Hybrid Architecture advanced here offers a number of singularly
attractive characteristics:

(1)

(2)

(3)

(4)

The approach allows the shifting of the functions addressed
by a computer during a scenario so that the system loading
remains balanced, and no processing capability is idle during
peak loading.

This characteristic depends on the centralized pulse-return
schedul iy functicin located in the RRA, to retain the
simplici*~ of design, and the centralized database structure.

Fault tolerance is embedded in the parallel design. THREAD
pracessurs are envisioned as performing constant on-line
testing. When a fault is reported by a processor to the RRA,
this THREAD Processor is immediately descheduled. The
problem of providing high processor reliability is then
concentrated on the special-purpose RRA, MEM, and SCHEDULING
processors.

Thi. characteristic depends on the centralized scheduling and
the completely redundant structure of the proposed THREAD
processors.

The computing speed of the THREAD processors need not be over
0.5 MIPS, except for end game processing, where 1.25 MIPS
processors are required. Thus, the actual capability
selected for these processors would be based on a
trade-analysis of cost, redundancy, and operating system
complexity. Thus, there is an opportunity to minimize cost.

Maximum loading of the processor segments is determined by
the radar pulse rate limit. Thus, simple protocols for the
BUSSES, and MEM, RRA, and SCHEDULING processors can be
implemented.

€s-12




The architecture requires a 1 Mwps at 32b/w BUS on the input
and an idencical BUS on the output. Given 10
accesses/pulse-return as a bound, 20,000 access/sec (50
u-sec/access) are required to support a 2000 pps radar rate.
These data and access rates are easily obtained with present
technology.

(5) Both the RRA and SCHEDULING processors are special-purpose
processors with control structures dedicatd to performing the
required algorithms. These processors, and the MEM
processor, would be designed with emphasis on fault
tolerance. The RRA and SCHEDULING processors both are
implemented as two-stage processors. The URM might also be a
special purpose processor.

The architecture can be contrasted with the Thread Processing
Architecture or the Centralized Architecture that were also examined in
this study.

The Thread Architecture has a Yimited number of functions assigned
to each computing NODE. This requires that redundancy be added to the
NODE structure in order to achieve high reliability. The redundancy can
be provided for a NODE either internally to each processor, or by
providing multiple processors. Also, distinct hardware and software
components may be required for different NODES, increasing the cost and
complexity of design and development. A Thread Architecture has the
characteristic that substantial application processing capability is not
being used at the maximum loading point in the worst-case scenario.

The Centralized Architecture has the major fault of not taking
advantage of the response-time/throughput loading disparity
characteristic of the Site Defense Problem. The processing power must
support the peak throughput loading. A very powerful and costly
processor must be provided to meet this load. Managing the central
processor requires a significant operating system overhead in addition.

VERAC




VERAC has analyzed the loading and throughput requirements for the
BMD Site Defense Processor. This analysis has motivated the development
of an approach to the processing architecture that is characterized by
parallel processors scheduled in real-time to perform needed functions.
The approach also depends on a central, track database managed by a
dedicated processor, and on a single scheduling and control point.

ettty _oonbliide Sndntbiohindiile TEINESII SN

ES-14




1.0 INTRODUCTION

The U.S. Army Ballistic Missile Defense (BMD) Systems Technology
Program (STP) office supports a program to maintain and update
technologies critical to the deployment of a BMD system. One part of
that program, the Advanced Data Processing Subsystem Investigation
(ADPSI), was directed toward the identification of key technical issues
involved in the data processing subsystem, and the resolution of those
technical issues which would be time-critical in a full scale
development. As a part of the ADPSI effort, VERAC conducted this study
of alternative network architectures for a distributed data processing
(DDP) approach for the data processing subsystem.

In order to meet the technical objective of this study, VERAC
extended a previously developed simulation tool for network flow
analysis into a wholly new Processing Architecture Evaluation
Methodology (PAEM), with a supporting tool, the Processing Architecture
Evaluation Simulation (PAES). PAEM/PAES, described briefly in Section 2
and more fully in Appendix B, provides a highly disciplined and
extremely flexible approach to characterization, design and analysis of
(centralized and) distributed data processing systems.

In addressing the functions to be supported, existing software
designs have been used, specifically those of TAP, the Tactical
Applications Program [3,4]. These designs are tied to the use of the
CDC 7700 computer; as a result, many aspects of these designs reflect
CDC 7700-specific implementation considerations rather than the process
supported by the implementation. A prime example of this is the
partitioning of the software into tasks which collectively could be
effectively schedule by TOS, the Tactical Operating System.

The third section contains a discussion of the effort to obtain a
machine-independent description of the BMD functions. This effort was

an essential first step in addressing DDP architecture design, and

VERAC

incorpocaled

1-1




- - X

further, yielded an extremely useful characterization for subsequent
related analyses, and, ultimately, for design of the software on a poP
system. The effort we have conducted included the following steps:

(1) an analysis of the existing BMD task designs, particularly those
which were actually realized as code (radar interface, target and object
tracking and discriminaton), to obtain a characterization of task code
structure (functions, principal data strucure, and timing models); (2)
an aggregation of tasks based upon associations necessary for principal
functional requirements (e.g., tasks on a processing thread were
generally put together); (3) a sequentially decomposition of these
functions, ultimately to yield a set of PRIMITIVES, each of which is a
smallest, logically cohesive unit. These PRIMITIVES served as the basic
units allocated in development of a distributed processing architecture.

Performance requirements and design constraints have been obtained
from available documents. The principal requirements which have a
significant impact upon architecture are (1) the “"port-to-port" response
times associated with the processing of the various types of radar
returns, and (2) the throughput or total computer processing load
necessary to support all functions in selected scenarios. These
requirements served to guide the Process Definition.

PAES was used, independently of a specification of computer network
architecture, to perform an analysis of the loading associated with two
BMD scenarios. This loading analysis provided valuable insights into
the efficacy of candidate architectures and aided the synthesis of the
Hybrid architecture.

Three types of architecture were examined: (1) centralized
(roughly corresponding to the existing COC 7700 implementation), (2)
thread (closely corresponding to the MDAC paper design), and (3) hybrid,
developed by VERAC as a part of this study. Evaluation of these
architectures is given in Section 4, with further details contained in
Appendix C.

Section 5 provides important conclusions of this study.

1-2




2.0 PAEM/PAES

This section briefly presents a methodology for supporting the
analysis and design of the distributed data processing subsystems. This
methodology played a critical role in this study in supporting the
design and anslysis of alternative computer network architectures for
the Terminal Defense data processing subsystem. In this application,
the number and complexity of functions to be supported and the large
number of hardware architectural options leads to a large, complex
design effort. The purpose of the methodology presented here is to
provide an efficient means of assessing HW/SW options at a level of
detail sufficient for first cut designs, while, at the same time,
realistically refiecting the dynamic processing load encountered in the
Terminal Defense mission.

The Processing Architecture Evaluation Methodology (PAEM) presented
here is a systematic procedure for modeling the system function required
with hardware and software implementations. PAEM utilizes the
Processing Architecture Evaluation Simulator (PAES), the tool which
makes possible performance evaluation in a dynamic environment. Further
detailed description of PAEM/PAES is provided in Appendix B.

2.1 Processing Architecture Evaluation

Developments in computer technology have introduced a new direction
in the design of dedicated data processing subsystems. Where
previously a single central computer would support requirements, the
critical design effort was focused on software - processing algorithms
and the application operating system. With the impending availability
of processing elements with power in the 3-5 MIP range and therefore
applicability of DOP for Terminal Defense missions, the architectural

design associated with the network of distributed computers now is on a
level with the software design.

The Processing Architecture Evaluation Methodology and the
supporting simulation tool, PAES, supports two stages of the DDP HW/SW
design process. The first stage is the Definition of the Process in

VERAC

{ncocporated

2-1




w——tpom-

terms of the function to be supported, the environment (i.e., threat
scenario) and the requirements. PAEM supports this by providing a
formalized framework for representing the Process. Further, the
simulation tool, PAES, provides an effective means of checking the
consistency of the functional Process Definition by exercising the
funclional model in a realistic, dynamic environment. The flexibility

of PAES is a particularly important asset at this stage, since a variety
of process models and threat scenarios are easily introduced for
analysis.

PAEM/PAES can provide invaluable support to the second stage of
design in which functions are allocated to hardware elements and
architectural characteristics of the DOP system are specified. PAEM
provides a framework for specifying architectural elements, including
gross computer characteristics, operating systems, bus protocols and
data base management techniques, in a fashion that pinpoints critical
design issues. PAES provides an evaluation of a specific HW/SW design
as it would be expected to function in a realistic, dynamic eavironment.

PAEM/PAES fills an important gap in otherwise availab’e analys:<
tools. Analytic tools (static, queueing network models) snd static
simulations, while, being flexible and efficient to use, cannot reflect
the critical congestion effects which actually occur in the dynamic
environment. The presently available tools which can provide useful
measures of performance in the dynamic environment are complex
simulations which are relatively inflexible -~ requiring recoding to
examine substantial deviations in the process definition or in the DDP
architecture - and expensive to run. These features severely limit the
ability of these complex simulations to provide an effective HW/SW
design aid. They are, however, valuable for final validation of
performance of a design, because of their fidelity in performance
prediction. PAES provides a dynamic simulation, yet retains flexibility
in application by depending upon a table-driven simulator whose table
elements constitute the definition of the process, scenario and
architecture. Run time efficiency derives from the flow approximation
at some cost in performance prediction accuracy. As a result, PAES

?2-?




provides a means for rapidly assessing an alternative design, and can,
in fact, be integrated as an important aid in the actual design process.

2.2 The Nature of PAEM/PAES

In the design environment where the computing resource is a single,
large central computer, the hardware/software design process separates,
after, a preliminary design step, into two largely independent, parallel
paths. Integration occurs near the end of the development cycle. In
contrast, when a distributed data processing resource is a candidate
approach, the hardware/software design process is integrated
throughout. So, while the use of distributed data processing technology
can lead ultimately to substantial advantages, the associated design
process is substantially more complex because it involves a hardware
design effort and substantially more coordination between the software
and hardware design.

The Processing Architecture Evaluation Methodology (PAEM),
supported by the Processing Architecture Evaluation Simulation (PAES) is
specifically designed to suraort an integrated HW/SW design effort for
DDP systems.

The complexity inherent in integrated HW/SW designs is
substantially relieved in PAEM by the separate representation of process
(functional representation of software) and hardware architecture
(functional representation of hardware and hardware-related effects).
The first step in PAEM is an architecture-free Process Definition which

focuses on representation of the process to be supported by the
software, representation of the threat scenario and representation of
the evolution of the process. The tool PAES supports this step, again,
independently of any architectural effects, by providing for simulation
of the process in a canonical dynamic environment which does not include
the effects of overhead processing and delays associated with specific
implementations. This capability allows for detailed checking of the
Process Definition before any architectural effects are introduced.

VERAC

Incorporated




A .

PAES itself is structured into three functional components
(illustrated in Figure 2.2-1):

(1) Input Specification - The process, architecture, scenario
and output reports required are separately specified.
Automated verification of structural consistency is provided
by this component of PAES.

(2) Simulation - A deterministic, flow-oriented representation
of the processing of “work-units" operates on tables defined
by the Input Specification component. Process and
architectural effects are separately simulated. This
provides the basis for architecture-free process simulation.
The overall modularity makes additions of new architectural
effects modules relatively easy. This component generates
files as directed by the Report Specification.

(3) Report Generation - A User-interactive component produces
performance tables and plots from files generated by the
Simulation component.

[ 3
v NODE &
.
H
PROCESS SCERARIO 4
SPECIFICATION RIVER i
t
] : time mec
1 .
ARCHITECTURE ARCMITECTURE
SPECIFICAT ION EFFECTS
: : Queue: SV returns
SCENARIO PRIMITIVE ,
SPECIFICATION FLOW tire (ssec]  count
‘ 10 3.2
— : 20. 5.8
' 0 6.2
REPORT [ RECORD SYSTEM | 0 8.4
SPECIFICATION I CUTSTATE ~
e
INBYT . REPORT
SPECIFICATION SIMULATION GENERATION

Figure 2.2-1 PAES - Processing Architecture Evaluation Simulation

]

_ . o 3
L e X A




2.3 Application of PAEM/PAES to Terminal Defense Data Processing
Subsystem Analysis and Design

PAEM/PAES has an important role in two stages of the design
process: (1) in the Process Definition/Functional Decomposition stage,
and (2) in the analysis of architectural options. Each of these roles,
as they relate to the Terminal Defense system, is described in separate
subsections below.

2.3.1 Process Modeling

Process Modeling, illustrated in Figure 2.3-1, interfaces with a
system level mission analysis and high level process characterization.
The mission analysis produces a description of functions to be
performed; the environment and, in particular, the threat scenario(s);
and performance requirements. Functional decomposition is then
undertaken to elaborate the description of functions into a set of
subfunctions each of which is a logical, “primitive" process element.
It is these primitives which are represented in PAEM/PAES.

In PAEM/PAES each processing primitive is represented in a standard
format. This is illustrated by the representation for the primitive
ANGRP in Figure 2.3-2. The principal elements of the representation
are: (1) input queue buffer, (2) processing load representation in
terms of (estimated) machine language instructions executed for each
input "work-unit", (3) one or more accesses to a resource which may
reside inside or outside of the computing node supporting the processing
represented by this primitive, and (4) an output queue buffer. This is
one of the simpler processing primitives. Other primitives involve
several inputs, several external accesses (e.g. to data bases) and/or
several outputs - but all primitives involve a single processing load
model.

The high level process characterization is used to develop a
process evolution model. For Terminal Defense this model reflects the
sequence of processes which are triggered by the initial detection of an
RV, ghost, decoy, fragment, or other “object". '

@ VERAC

incorporated

=9




The Processing Architecture
Evaluation Methodology embodies
a formalized approach to Process
Definition, including a standard
format for representation of
subfunctions, scenario inputs
and process evolution model.

Use of PAES assists the Process
Definition by providing a tool
for checking out the mutual
consistency of these elements of
the process in a realistic,
dynamic environment.

PROCESS DEFINITION

- Functions to be performed
- Environment {threat scenario)
- Performance requirements

PAEM/PAES

FUNCTIONAL DECOMPOSITION

Decompositions of functions into
subfunctions and associated per-
formance requirements

Figure 2.3-1 Role of PAEM/PAES In Process Definition




ANGLE
GROUP
ETURIS DATA
SLER ANGLE WAITE \.
— GROUP AIGLE ‘
PROCESSING GROUP
: FILE
o PROCESSING TIME o DATA BASE
ACCESS TIME

VERAC

Figure 2.3-2 Characterization of a PRIMITIVE

a_'l




PAES assists in this Process Modeling stage by providing a
mechanism for validating the model in a realistic, dynamic environment.

The Process Evolution Model is determined by combination of the
description of the threat and the high level description of the
engagement process. For example, these factors indicate the average
time spent in each stage of processing. These times, together with a
specification of the mix of object types, determine the splitting
parameters.

The tool PAES provides valuable support to Functional Decomposition
and Process Evolution Modeling by exercising the explicit, parameterized
representation of processing primitives, with the process model
embedded, in a canonical dynamic environment. The Report Generation
capability provides detailed views of internal processing (e.g., queue
counts and flows) to assist in this validation effort.

An extermely important feature of PAEM in this Process Modeling
stage is the explicit representation provided which can serve as the
context for discussion amongst the various contributors to an analysis
and design effort. Assumptions about critical aspects of the process
algorithms, in terms of processing loads, data files access requirements
and interrelationships as defined by the process evolution model, are
made explicit so that they can be the object of technical criticism,
refinement, and, ultimately, consensus.

2.3.2 Evaluation of Architectural Options

The second and equally significant role for PAEM/PAES in DDP HW/SW
analysis and design is in the evaluation of architectural options, as
illustrated in Figure 2.3-3.

The Processing Architecture Evaluation Methodology supports
successive HW/SW design stages through explicit representation of the
allocation of subfunctions to computing Nodes (i.e. processors), the
architectural characteristics of these Nodes, and the communication
Buses and Resources associated with the Node set. The supporting PAES




The Processing Architecture
Evaluation Methodology supports
successive HW/SW design and evalu-
ation stages, through explicit
representation of the allocation
of subfunctions to computing Nodes
and of the architectural effects
of these Nodes, and of communi-
cation Buses and Resources. The PAEM/PAES
supporting PAES program provides
for distinct, data-specified
representation of functions,

architectures and scenarios in
order to provide maximum flexi-
bility in efficiently examining
HW/SW alternatives. The simulation
and associated report generator
provides a thorough view of per-
formance in a realistic, dynamic
environment, providing such measures
as CPU utilization, buffer queue
dynamics and port-to-port response .
times.
SOFTWARE FUNCTIONAL
SPECIFICATION

Characterization of process

algorithms corresponding to

subfunctions

ALLOCATION-

Mapping of subfunctions to hard-
ware architecture

HARDWARE FUNCTIONAL
SPECIFICATION

Characterization of computers,
peripherals and comnunication
buses :

Figure 2.3-3. Use of PAES in Architecture Evaluation

VERAC




D bt

program provides for distinct, data-specified representation of
functions, architectures and scenarios in order to provide maximum
flexibility in efficiently examining HW/SW alternatives. The simulation
and associated report generation provides a thorough view of a
performance in a realistic, dynamic environment, providing such measures
as cpu utilization, buffer queue dynamics and port-to-port response
times.

The design and analysis procedure is illustrated in Figure 2.3-4.
The Process Modeling, accomplished as the first step of design/analysis,
serves to define the process and threat scenario. Computing network
structures are postulated and primitives are allocated to computing
nodes, bus organization and protocols are defined, and external accesses
are resolved to define candidate architectures.

The program PAES is applied to each candidate architecture to
produce performance measures for purposes of comparison to requirements
and to results for other candidate architectures. Critical measures are
port-to-port response time on critical threads and cpu utilization.

The flexibility in the use of PAES, particularly in specifying
architectural alternatives, greatly assists in the isloation of critical
functions that require special-purpose architectures or algorithm
modification in order to achieve balanced cost/risk implementation.

2-10




MISSION ANALYSIS

PROCESS
GCESCRIPTION

CANCIDATE
COMFUTER
ARCMITECTUSES

Figure 2.3-4.

VERAC

m EVALUZTION SIMJLATION

AND
PROCESS DEFINITION

COTARATIVE
EVALUATION
OF 2sIMITECTURES

PAES 1

PROCESSING RRCHITECTURE

SCENTIFICATION
CF AN 1“FROVED
23IuTECTURE

Network Synthesis and Analysis Procedure

=ferd




B
|
{

3.0 PROCESS DESCRIPTION AND ANALYSIS

The purpose of this section is to present an overview of the
process description developed for the BMD terminal defense data
processing function. Furthermore, implications for architecture are
P derived by application of PAEM/PAES to this process description.

3.1 Functional Overview

! The functions to be supported by the data processing subsystem in

' the Terminal Defense System (Underlay) are illustrated in Figure 3.1-1
(taken from [1]). At the highest level, these functions are partitioned
into three groups:

(1) defense unit or "Non-Module Command DU", indicated in the
leftmost box,

3

T ————

(2) ¢ interface; and

(3) module functions, indicated in the rightmost box headed by
“Module Command DU".

The top level unit functions that have been ideatified are prescribed in
the fo]lowing:1

Unit Resource Management (URM)

The URM function maintains the object status information for each
object in track. 1t accepts and processes messages from the ODD
function to establish track on objects, and from the OT/OD functions to
maintain status on objects. It provides processing to perform
allocation/reallocation of OP and radar timeline resources. It provides
to the 0T, OT, ODD, and USC functions the DP and radar timeline

1These descriptions are adapted from [2]. References to KMR

(kwajalein Missile Range) test functions have been deleted.

VERAC

s st o




‘(1] woay udel “(Ae{uspupn) waisAs
asuasaQ LRULWAAL aY3 UL SUOLIOUNZ B[NPOK pue Jpup  “[-1°E au4nbyg -

NO ONYWWOD 3TNOOW NON

s40
¢ w ﬁ w @ B
S.N0 GNVWWOD
310005 = <=1  ININIOYNVW T0ULNOD [
“NON ¥3HL0 20UN0SI8 LINA  Laquy, 151n034 JTSSIY | HOL4ITUIINI NUNL3Y 311SSIN i
0 @ @ » 153003y 1432434NI 1
HOILVNININISIO | o , - .
k .« R 153n03Y 133180 sNUN13IY
SNOILINN SNOILYIINNKIY0D NOLLVNINIYISIO NONUYHIrIYISIO
LINN YIHL0 31N00N
NIVUL 193700  jeommmmsmancrncnny
I IR TR 1S3nD3Y ui 133 SNUN13Y
TRINSSISSY NIVl vyl
$nivis 3naow P oniss3d0ud —>1 notLvaaisaa onv|
TNINSSISSY —3> J400QNVYH 183N03W I 401193130 LI 308D SNUNL3y
SN1VLS nvel ILONY NS
1ININNOYIAND % J,_w @ &&3:8; uvavy
s | T t
o} S GHY ININNYTS SNINNG3INIS NOILVIIMISSY
ONISS3304d 1439434K1 dvovy | - NYN13Y Uvavy
39VSSIW et . » y §
GRVAY03 v AQY3IY S4IQHO YVavy
JUSTIW
P — . SNUNL3Y YVOVY
iR T
J HI0HO HINAYT :
JOLY/IO0L [l N31SASEAS
WHv4 uvavy
ISSIN
1InnraY

$3144d0

PSP .




Mk L I e

EEEEE——

resources available for data augmentation and maintains data received
from these functions on the level of resource utilization.

Radar Return Assimiiation (RRA)

This function processes all return messages from the Systems
Technology Radar (STR). It evaluates the validity of each message from
the STR, and sorts messages in order to determine subsequent Engagement
Software (ESW) functions for processing.

Radar Scheduler (RS)

This function provides the TAP interface with the STR for
scheduling and transmitting radar command messages. The RS function
provides the STR with all the data required to transmit pulses and
associate and process returns to the ESW. The RS function receives
radar pulse requests from other functions, and schedules radar pulses as
limited by radar timing and energy constraints imposed by the Unit
Resource Manager (URM)}.

Unit Search Control (USC)

This function (not illustrated in Figure 3.1-1) stores and provides
the RS function information needed to initiate scheduling of identified
search areas for reentry vehicles. As such it identifies the set of
prestored search beam requests (including the designation of normal
search versus data augmentation search), their execution sequence, and
associated pulse rates to be scheduled by the RS function.

Object Detection and Designation (0DD)

This function processes all search/verify target reports in order
to prepare state vector estimates for the initiation of tracking and to
reduce the non-threatening and redundant target load in track. It first
associates valid detections in the search/verify report into angle
groups. For each angle group a track initiate pulse sequence is
determined.

VERAC

incorporated




— —

The 00D function eventually designates each target (valid detection
in the S/V report) as a ghost, object or non-threatening object (as
determined by a non-threatening velocity vector). This designation is
based on track initiate radar return information for each angle group.
Information on designated objects are passed on to the OT function for
track processing.

Object Track (0T)

The 0T function provides the capability to establish and maintain
track on objects which pass the track initiation process. It evaluates
quality of tracking returns, updates object state and error covariance ;
from valid returns, and determines the beam pointing parameters for ‘
additional tracking pulses. The OT function monitors status on each ’
object and writes status change data to URM. '

Object Discrimination {0D)

The 00 function provides the capability of classifying an object as
an RV, tank, decoy or fragments. If an object is classified as an RV,
then OD will determine the class of RV and where the impact point is
expected. An option is provided to drop objects from track via a
notification to OT for those objects determined to be fragments. In
order to perform this processing, OD will request the scheduling of
active discrimination radar pulses by the RS function.

The interface to the Command, Control and Communications (C3)
Subsystem is performed by the following function (indicated as Module

Communications in Figure 3.1-1):

Defense Module Communications (DMC)

This function handles interfaces between the ESW and the Command,
Control and Communications Subsystem. As such it processes all high and
low speed communications traffic and performs message error processing.




SR e L

3.2 Functions Represented by the Process Description

For purposes of detailed analysis, a portion of the set of
functions has been selected. These functions are illustrated in figure
3.2-1. The functions included here are:

radar returns assimilation

radar scheduling (including search raster generation)
S/V returns processing

angle group tracking (Track Initiation)

object tracking

object discrimination

intercept planning

interceptor control.

Not included are:

° unit resource management
' communications interface
. model level functions.

This selection was based upon the fact that the selected functions
constitute nearly all the processing load and include all critical
threads for response time considerations. The remaining functions are
not well-described in existing documentation.

3.3 Functional Decomposition

The development of the detailed process description was based upon
a critical review of available software documentation ([1], [2]). The
processing of TASKs was examined to identify structure, timing models
and required data accesses and transfers.

VERAC

3-5




B A S

radar returns

Y

Radar Returns
Assimilation

YVVVV

S/V
returns

<& RADAR

radar commands

e
N

Search Raster
Generation

search rasters
~

Microscheduler

N

candidate pulse
pool

7

S/V Returns

TI
returns

first TI pulse

Macroscheduler

/\/\/K/‘\ AN

Y

Processing

new TI

4

TI Tracking

request

TI pulse request

0T
returns

Y

new 0T

Y

0T Tracking

AD
returns

0T pulse request

\\4

Y

0D request

Object

G
returns

Y

Discrimination

AD pulse request

) Intercept request

Intercept Planning

(first G pulse request

, Intercept pi

<

an

\\4

Intercept Control

G pulse request

3.2-1. Process Overview

WA




l - .

Structure was identified in terms of three general elementary
structures: parallel, sequential-repeated and sequential-distinct, as

described further here.

Paralle)

The function substantially consists of alternate, and logically
distinct, processing paths, depending upon the specific nature of the
input instance. Pictorially, the functional structure is of the form:

where the initial and/or final stage of processing may be absent.

Sequential-Repeated

The function substantially consists of a sequence of processes, a
large portion of which are identical in nature, as for instance in an
iterated loop. Pictorially, the functional structure is of the form:

A

where the initial and/or final stage of processing may be absent.

QYERAS

-7




Sequential-Distinct

The function substantially consists of a sequence of processes,
logically bound and distinct in nature. Pictorially, the functional
structure is of the form:

The analysis was recorded in the form of a set of one or more
PRIMITIVEs corresponding to each TASK. For example, the S/V returns
processing function, implemented in the TASK TORP, in represented as:

\\52552// TIPLS]

Each named ellipse is a PRIMITIVE function. This diagram illustrates
the sequence of processing events.

Each PRIMITIVE details the inputs, outputs, processing load (CDC
MLI instructions), significant data accesses and transfers, and
scenario-dependent evolution of processing. For example, the PRIMITIVE
ANGRP is illustrated in figure 3.3-1.

In Appendix A, a complete, detailed process description is provided

for the function of figure 3.2-1. One particular feature of this
description merits attention here. We have adopted a flow-oriented

3-8

B P % P e e

.

| —




1013021 |RL}LuUL
I1)
1INIL

oL

sdnoab 1]

&
N

Sd¥91l

J39jsued] pue ssadoe pijep Bupjuasaadaa a0y swsLURYISW

oM} Bupleasnill ‘dYINY JATLIWIYd

suanaa A/S

passadouad
(vda aLts)
N s3| L4 dnoub
a|bue 3}tum

ASJYd

sdnoab ¢
Les1dA1 ¢dnoub 3|bue
a2d SpaOM €9

*1-g°¢ aJnbiy

1MW 022b sai(dug

(v-2) € N

(st-¢) ot =9y

sa9joweded |eulwop

uanlIdL A/S
jutod bulleoly  poeca0udaad
9,,0
IW “NTNIT + (Bburssadoadaad
% oov + Inwse < SU4N3as u0119333p)
butdnoub a(buy dddyg wody
dAS

uoL3ouny BuLssadoad suanjas ucil}dalag

purssasoad dnoub 3a(buy

dYONY 3Atltuiiad

incotporated

@VERGC




representation of the evolution of the status of objects (and
interceptors) as they are detected, tracked, classified and
intercepted. These parameters appear in the final splitting to obtain
outputs in each PRIMITIVE.

In Figure 3.3-2, the complete set of primitives are indicated. The
flow indicated corresponds to the sequence of processes corresponding to
pulse returns. The general layout corresponds to the process overview
previously presented in Figure 3.2-1. 1In this figure one can see this
detail and corresponding processing of pulses associated with previously
identified process evolution states. In Appendix A, details of the
process evolution model are provided.

3.4 Process Evolution

To provide a representation of the process evolution we have
adopted a finite-state model. The process states are indicated in Table
3.4-1. Objects begin in the state "SV", i.e., have associated
search/verify returns, and evolve through states TI » OT1 » 0T2 » OT3 »
0T4 » OT5» complete. Some objects are dropped at an intermediate
stage. Further, entering 0T3 is associated with the generation of
active discrimination pulses, and 0T4, with tracking while planning
intercept, and 0T5, with tracking while intercepting.

The overview of the process evolution is illustrated in Figure
3.4-1.

The specific scenarios assumed in evaluating alternative network
architectures is characterized by the following mix of objects:

Redundants 8
Ghosts 10
Fragments 20
Decoys 70
RV's 32

Total Objects 140

3-10

-




Ui
¥OLdINI

NI
a3y

*2=£°¢c aunBypy

L9POW 553304d 3sUD;a0 33§

3 T

—

O S e W W

D,
o

D OYR T D
(G )—

- SR -\ W
[ T e - - ——— —————— - @ _—
B - 2\ by
= -
- ]
———— - - o )
- '
- — &
- m —

-

S —— W

SYu3A

e T e

e Bt Pty Pl WS
N — O~
A O

B 0 @cco&x

—_ v‘yll‘v{ N

— ;vz@? @Yffl-"?l




dead
group

)

redundant
object

A

072
fragment
1
073
1 SEC
decoy
RV
\
074
3 SEC
Y
075
6 SEC
TRACKING
PROCESSES
Figure 3.4-1.

oml
.70 SEC

0BJCOR

redundant
object

.50 SEC

fragment

decoy
INTERCEPT
PLANNING 3 SEC
Y
MG
6 SEC
DISCRIMINATION INTERCEPTOR
PROCESSES PROCESSES

Process Evolution




ot it e e+ 1 it e cnem - Mt -

Table 3.4-1 Process Evolution States

SV

search verify processing

T1

angle group tracking (track initiation)

oTl

object tracking before any object discrimination

T2

object tracking with passive object discrimination

0713

object tracking with active object discrimination

0T4

object tracking during intercept planning

075

object tracking during intercept

POD

passive object discrimination for unclassified objects
{objects in state 0T2)

AD

active object discrimination for unclassified objects
(objects in state 0T3)

MG

missile guidance

e A Ao e S

3-13




These objects were generated by inserting an S/V returns time
history into the S/V radar return path (see Figure 3.3-2) through the
use of the PRIMITIVE INSVRT. Two scenarios were examined by variation
of the S/V returns time history (and with the object mix fixed as
previously indicated). The $/V returns time history for each are
illustrated in Figure 3.4-2. The first of these, the “single-spike"
scenario involves introduction of 75 S/V returns in the first 100 msec.
The second, the “double-spike" scenario, introduces 40 S/V returns in
the first 100 msec and 35 S/V returns in the interval from 1200 to 1300
msec.

The single-spike scenario presents a "worst-case" for loading. In
the absense of queueing, this scenario produces the maximum peak loading
for any portion of the process amongst all scenarios with the same total
number of S/V returns distributed over more than 100 msec. In
particular, NODE loading has a maximum peak for this scenario.

The double-spike scenario represents a more typical situation and-
in fact closely approximates a scenario which has been examined by

McDonnel Douglas in their simulation analyses.

3.5 Response Time Regquirements

The performance requirements for the site defense processor to be
used in this study were provided by McDonnel Douglas Corporation. These
are response time requirements along certain processing threads. Only
unit level threads are of concern here. Table 3.5-1 presents the
Port-to-Port thread definitions from radar subsystem to radar subsystem
as defined by McDonnel Douglas in terms of TAP tasks.

Also indicated in this table are the threads which were modeled in
PAES (any thread can be modelled), and the corresponding nominal
response time requirement.

In using PAES, the set of PRIMITIVES of the form ".DTF" were used
to insert delays which yielded the required response times. This device
was important in maintaining the desired temporal evolution of the

QEEARe

13

" ——— . DTN




(a) Single-Spike Scenario

1000 ~
o <——o 75 S/V RETURNS IN 100 MSEC
a
2
§§ 500 -
w
[-4

250 ~

0 — - —
0 500 1000 1500
TIME IN SEC
(b) Double-Spike Scenario

1000 -

750 4
v
(72}
[~
a
¥ 500 -
o
E -
o -a+——— 40 S/V RETURNS IN «— 30 S/V RETURNS IN

100 MSEC 100 MSEC
250 y
0 T T T
0 500 1000 1500
TIME IN SEC

Figure 3.4-2. S/V Returns Time Histories For Two Scenarios




Table 3.5-1. Port-to-Port Thread Definitions

Thread TAP Tasks Measured | Nominal
by PAES |Requirement
(msec)
Verify Return TRIP-TDRP-TRIP v 100
Track Initiate TRIP-TIRP-TSBT~TRIP 4 50
Last TI TRIP-TIRP-TSBT~TFII- 4 50
TREQ-TRIP

Normal and Post-Commit TRIP-TOTT-TRIP /(/)* 50 (25)
Track/Maintenance Track
Drop Track/Track Rate TRIP-TOTT-TREQ-TRIP
Change

Passive Discrimination/ TRIP-TOTT-TPOD-TRIP
Track to Discrimination

Turnaround
Active Discrimination TRIP-TOTT-TPOD-TREQ-TRIP
Request/Drop Track ’
Active Discrimination TRIP-TAOD-TPOD-TRIP 4 25
Interceptor Guidance TRIP-TICT-TRIP / 20
and Track
Pulse Replacement/ TRIP-TRIP
Reschedule
Object Reacquisition TRIP-THAP-TRIP

*Endgame tracking has the move stringent requirement of 25 msec.

VERAC

incorporated

3-16

et e ot e - v - - .




3.6 Use of PAES in Process Definition and Analysis

The simulation program PAES was used extensively in the preliminary
stages before architecture evaluation in arriving at a correct process
definition and in providing an evaluation of the inherent loading
requirements independent of any particular hardware architecture. In
the two subsections which follow, we describe the use of PAES in each of
these two areas.

3.6.1 Verification of Process Model

The process model is enbedded into the primitives in two
fundamental ways. The structure of the evolution and the relative
numbers of objects evolving at specific points in the process are
represented in the branching at the output of corresponding PRIMITIVES.
Simple analyses, presented in Appendix A, were used to deduce branching
or splitting parameters which would yield the correct mix of objects.

Secondly, the set of PRIMITIVES of the form ".DTF" were used to
introduce delays along each radar-radar thread to yield the desired
response time, as inidcated in Table 3.5-1.

PAES was exercised on increasingly larger segments of the process
to verify (and indicate needed corrections to) the process model. Final
confirmation is illustrated by (1) the accumulation of number of objects
at successive stages of the process, Figure 3.6-1; and (2) the thread
port-to-port response times displayed in Figures 3.6-2 through 3.6-7.
The latter figures show close agreement between modeled response times
and requirements. Al} figures here relate to the double-spike
scenario. Similar confirmation was obtained for the single-spike
scenario.




P - e

FIRST T]
75 ANGLE- GROUPS

B00681-1 FIRST

RVs)

NUMBER OF OBJECTS

0 12

0T

140 08JECTS

A / (REDUNg}-‘.NT& GHOSTS,
10 A FRAGWMENTS, DECOYS L

N REDUNDANTS AND
100 GHOSTS REMOVED
. 0TY = OT2

122 0BJECTS
50 -
0

(FRAGMENTS, DECOYS
AND RVS)

FRAGMENTS REMOVED
072 « 073

102 0BJECTS
(DECOYS AND RVs)

073 - OT4

TIME IN SEC DECOYS
32 RVs

Figure 3.6-1. Accumulated Number of Objects Processed at

Successive Stages
VERAC

REMOVED

3-18




sawy ] dsuodsay
2404-03-3404 peadyl 33e|3jul Noesl °2-9°¢ a4nb}y

“ 935 NI IWIL L¥V1S

m 56° L 66" G¢*
,, i i\ 1 0
i

F0E o
: @
; >
M o
| g
! TYNIHON A B mv.
! E
| - 09 &
|

11
- 06




awy] asuodsay 3404-03-3404 peadyl Ji 3Ise]

33S NI 3WIL 1¥ViS

“€-9°'¢ 4nb14

09’ oy’ 0e’ 0

Il 1 I Q
- 0€

TYNIWON
— P ——r -
~ 09
1L NId

= 06

(93S) NOILTUNG QY3IYHL

QYERRS

e oo

3-20

X




f i v T v
auwgl asuodsay 3404-03-3.404
uopjeuuEaosEQ aASsed bupang peadyj yoed] |eudoN “‘p-9°f d4nb6}4
335 NI 3WIL LyvLS
G't 0°¢t G2 0°¢
A — [
0
ﬁom

—

x
A —~
TYNIWON Pt o
- pu o «©

<

4

—

- 09 2

©

m

c

¢l10
- 06

e




W) asuodsay 3404-03-3404

bujuuelqd 3dadaajul bujang peauay) joeaj jewaoNy °G-9°g danbi4
J3S NI 3WIL 1YViS
0°9 0°s o't 0°¢
| 1 4
0
- 0¢
TYNIWON

~ 09
- 06

(23S) NOILVNNG QV3IYHL

3-22

@YEneS
incorporated
- .

R e A ATt s RN

o

e




aw}] asuodsay 3404-03-3404

pRady) UOpIRULWEUISLE PALIIY  9-9°C auanbi4

335 NI 3WIL LyvisS
0°L 09 0°§ 0'd
i S ||
0
- 051 b
A
P 4
o
e
TYNIWON e
- =
(=]
=
)
- 00 3
av
- 0SY
s it N




Wl "uddSey Juid-uy-340d
peadyl joed) pue asueping 403dadudju]  */-9°¢ d4nbi4 -,
J3S NI 3NWIL
0°ot 0°6 0°8 0°¢
| ] 1 O
P
4
]
-0t m :
_ﬁ !
p !
o i ' m
2 -
W o
=
o H
] =z ¢
TWNIWON / o H
- 7 |
W |
- 0€ Cm H
nn ‘
Ro
WS )
D




3.6.2 Process Loading Analysis

PAES has the capability to record flows through any set of queues
in the process. This capability was exploited to provide an analysis of
the process loading on various portions of the process associated with a
scenario, independently of any specificaton of hardware architecture.

We found this information to be extremely valuable in synthesizing the
hybrid architecture. It is interesting to observe that in this problem
maximal loading can be determined accurately by PAES. This is because
the thread response times are the duty cycle goals required for
processing the returned radar pulses. This is significant because the

tracking filters will be designed to perform best at a nominal update
rate. They will give the needed track accuracies. Higher update rates
give unneeded improvements in tracking accuracy. Thus by settin§ thread
delays (by inserting appropriate delays in the “DTF" primitives) we can
observe the characteristic system loading that is determine:s by the
selected scenario. This was the approach taken.

A second observation addresses the scenario. There is a bound on
the number of RV's that can be productively used against a single BMD
site. The fratricide effect provides one 1imit of the RV d:nsity to be
expected. Cost benefit analysis provides another. Thus, we can bound
the number of RV's this is required to be addressed in an attack
occurring over several seconds. The number of ghosts, fragments, and
decoys associated with a set of RV's can be estimated with good
accuracy. The question remains, what temproal distribution of this set
produces the heaviest loading on the site processor ? The answer depends
on the architecture of the site processor. In a poor architecture,
loading on one thread might produce a bottleneck in the processing of a
second thread. However, assuming a responsive architecture
(specifically, one in which no queueing for processing occurs) the
loading is maximized by a single dense wave of RV's occuring within a
few milliseconds and representing a simultaneous launch. This
conclusion follows from that the fact that, under the stated
assumptions, the loading is a linear functional of the input S/V time
history. Therefore, maximum peak loading on any portion or all of the
process is obtained with a maximally peaked S/V time history.

3-25

R

| W V) i , ) L 3 —i —a 1




In conformity with this observation, we have used, as a baseline, a
scenario with closely grouped RV's to determine the inherent processing
loading.

An issue of interest in characterizing the underlying process is
the sensitivity of the process to variations in the scenario. We have
examined this by running the PAES process model with a second scenario
that has two RV waves separated by approximately one second.

Samples of the loading - the TI and 0T2 thread for the single and
double spike scenario - are provided in Figures 3.6-8 and 3.6-9. These
results were run with a simulation cycle time of 2ms. Loading is
presented for a smoothed value over a 60 ms interval. These smoothed
plots represent the realistic loading in an architecture with some
buffer elasticity (perhaps 5 msec of data) between functions.

A summary of the system loading generated by the single spike
scenario is given in Figure 3.6-10. Interesting features here are:

(1) Contributors to the total peak loading are TI, OTl, 0T2, 0T3,
0T4, RRA, MICRQ and MACRO. The principal contributors are,
in order, OTl, then 0T2. Not contributing are SV, 0T5, IP
and IC.

(2) The loading patterns for RRA, MICRO, MACRO and all others
combined are very similar.

3.6.3 Architectural Implications

The response time requirements (Table 3.5-1) and the loading
assoicated with a scenario have implications for all hardware
architectures which might be considered., These implications are
examined here,

Thread response times lead to a processing requirement in terms of
a minimum cpu power (instructions per sec). Specifically, if the thread
response time requirement is T and the thread processing requirement per

VERAC

~3-26




peot Bujssdadosd susniay Il ‘8-9°¢ 4nby 4

oja0uddg ayids-argnog (q) o{4eud2g }ds-albuls (e) S~
935 NI WLl 335 NI 3WIL .
el 8 14 0 r4} 8 v 0
[ : i 0 1 4 i 0
L ]
x o 1
m m .m
2 = '
=) g —
= 2z ’
w w :
-l -
u00 w M/J L4
O « ]
-052 0 052 o )
I B @ -
(=) (=]
v 0
m m
x ]
4 i
o (]
~ 00G b 009

——a o -



peoq buyssasodd suaniay 210 °6-9°€ danbiy
0142udd§ 3yids-ajqnog (9) 0}40U3d§ 3}ydg-aibuis (e)
J3S NI IWIL J3S NI 3WIL
2l 8 14 0 2l 8 1} 0
i ) } 0 4 0

x oo
™ m
= =
2 S

L 052 & - 0S¢ 2
3 0
3 Pl
8 o
Qa o
A m
A wn
4 wn
S m
© Q
A o
5 i

r 00§ - 009 -
a 3

- 061 L 0SL

!

VERAC




oo
S/V
3.85
TI
12.64
on (P2
7.58
(877 w—
5,51 :
073
v 4.28
o | [PZZzz3 ]

7.95
ors 7 2
7.34
1c W77

v .65

RRA | il
v!1.98

MIcRO | 222 ]
v3.20

MACRO | o] R
34.05

ALL T////}//////Al |

[} 1 + L} T L) ) LB | R o LN

0 1 2 3 4 5 6 7 8 9 10 11 12
SECONDS AFTER BEGINNING OF SCENARIO

v PEAK LOADING (MIPS)
y o~~~ =50% OF PEAK LOADING
] non zERO LOADING

Figure 3.6-10. Load Phasing for the Single-Spike Scenario




work unit is p, then the minimum cpu power applied must be p/T.

Thread response-time-driven cpu requirements were ca::cuiated for
each thread, with results given in Table 3.6-1. Opposite each thread
name, the "total thread EMLI" is given. This quantity is determined
from the instructions per work unit and instruction type for each
PRIMITIVE on the thread, excluding those related to the radar interface
functions of radar returns assimilation, micro and macro scheduling.
Specifically,

EMLI = O [1.064 X floating point + .532 X integer]
primitives instructions/w.u. instructions/w.u.
on thread

(The rationale for this is provided in Section 4.1) To account for the
processing time involved in these radar related functions and for
communication delays, the response time available was reduced by 15 msec
for most threads, and by 10 msec for the interception threads, 0T5 and
IC. 1In the latter cases, it is assumed that priority techniques can be
applied, especially in scheduling, to minimize delays and thereby make
the indicated processing times available.

The derived cpu requirements are in the range of .10 to .35 MIPS
far all threads, except for 0T5 and IC. There the requirements are .82
and 1.22 MIPS, respectively.

Thread loadings corresponding to a particular scenario lead to a
second set of cpu requirements, but in this instance, the requirement is
for total cpu power available whether provided by one or by several
machines. To derive these requirements, the "total thread EMLI" is
multiplied by the peak workunit rate experienced by that thread in the
chosed scenario. Results for both the single spike and double spike
scenario are presented in Table 3.6-2. By comparing these results with
those of Table 3.6-1, it can be seen that

. the Yoading-driven cpu requirements exceed the response-time-

driven cpu requirements for every thread. This fact implies

@.-‘-’«_5!-‘.9-5

- 3=-3U

| L _




Table

3.6-1. Thread Response-Time-Driven Cpu
Requirements

Thread Total Response Time Allocated Required Power
Thread Requirement Processed Time (MIPS)
EMLI* including RRA, Excluding RRA,
MICRO, & MACRO MICRO, & MACRO
(msec) (msec)

Sv 6 577 50 35 .19
TI 10 058* 50 35 .29
Final Tl g 044** 50 35 .26
oTl, 012,
073, 014 12 236 50 35 .35
0T5 12 236 25 15 .82
Ip 7 714 100 80 10
IC 12 236 20 10 1.22

* 1.064 x floating MLT + .532

** TI/OT correlation is not on the final TI thread

*** hased on lower response time requirement

integer MLI, excluding radar functions




Table 3.6-2.

Thread Loading-Driven Cpu Requirements

Thread Total Thread Peak Loading
EMLI
Single-Spike Double-Spike
time | w.u./ MIPS time | w.u./ | MIPS ‘
(msec)| sec (msec)| sec

SV 6 577 60 700 4.60 60 367 2.41
TI 10 058 300 383 3.85 200- | 383 3.85 i
1380 §
Final TI 9 044 420 133 1.20 § 300- | 133 1.20 é
: 1400 5
0Tl 12 236 1000 {1033 12.64 i 1680 (1017 [Q2.44

012 12 236 1620 600 7.58 f 1980 500 6.12
073 12 236 1980 450 5.51 @ 2500 383 4.69 i
074 12 236 3000 350 4.28 i 3500 317 3.88 i

015 12 236 6500 650 7.95 % 7400 517 6.33

l
P 7 714 3000- 17 0.13 © 3000- 17 0.13
7000 ‘8000
1C 12 236 8400- | 600 7.34 10500 583 7.13
10200
inceor onhs
3-3¢
- T {
!
otk teis r— tecsnsiiedh e, et e




Close
loading is
interval.

that parallel processing would be useful, since smaller
(lower cpu) machines could then be used.

examination of the loading near the time of the peak total
useful. Figure 3.6-11 provides details in the relevant

The separate radar interface functions, RRA, MICRO and MACRO
and the combinied thread oriented processing each peak at very
nearly the same time. Therefore, allocation of these four
groups of processing to distinct NODES will not require any
more total cpu power than in the minimum cpu environment of
one central NODE.

The peak loading is determined by the pattern of the TI, 0T,
(except 0T5), 0D and object correlation (OBJCOR) functions
since the radar-interface function loadings are fairly
uniform in the relevant interval and the SV, 0T5, IP, and IC
do not contribute at all. As noted previously, 0Tl is the
principal contributor. In order to minimize cpu
requirements, process design should therefore be directed to
those functions noted as determining the peak load.

In summary, the following features of the process are significant

for hardware architecture design:

Feature 1:

Feature 2:

Response time requirements are much less than total
loading requirements. Thus, a parallel architecture is
appropriate.

Bus response, memory access, and operating system overhead
strongly impacts the processing speed required to do the
0TS and IC functions.

—




(otueudds ayLds-ajgnog)
buipeol yead 03 suoLIngLajuo) peauy] -11-9°¢ a4nbiy

Speauyl jueaa|dy 4ayig (q)

23S NI IWIL
L°2 6L L't St
1 i | i O
oz:ouz::lllJuNH”//rfr
-\ —
vy —
Il
\/\,ﬁm.—.
QYdIW \\\\\\\
-0°¢
QUIVI
ﬁm.c

(SdIW) NOILYZITILN NdD

Mk
speaay) -
UOjJBULWLADS LG pue yoeay 30faqp (e)
33S NI IWIL
L°e 6°1 Ll 61
] i | | o

) ~—
e}

0l <
c
—f
= - S
S L9
s
)
=

Loz =
"
Z

010 w
- 0€

QLIRSS




Feature 3:

Feature 4:

The thread processing requirements for almost all
functions are under 0.5 MIPS. Thus, advanced high speed
processing architectures do not have to be used for these
functions.

0T1 loading uses over 50 percent of the processing power
required during the maximum loading of the system.

3-35




4.0 EVALUATION OF NETWORK ALTERNATIVES

The principai »urpose of this study has been to synthesize and
evaluate an "optimal® computer network architecture for supporting the
BMD data processing subsystem. To arrive at a sound basis for this
endeavor, the process has been thoroughly examinea, as documented in the
previous section. Further, previously developed approaches to
architecture were assessed. In this section, two such architectures are
examined - Centralized and Thread. The remainder of the discussion is
devoted to the description of and evaluation results for the Hybrid
Architecture that was synthesized.

4.1 Evaluation Procedure

Before addressing the evaluation results themselves, we describe
here the procedure that was used in arriving at evaluations of network
alternatives. An overview of this procedure is illustrated in Figure
4.1-1,

#1SSI0N ANALYSES

AND
FROCESS CZFINITION

PROZESS
DESCRIFTION
ARATIVE
PAES o2 U5 TION
0 :IMITEITURES
PROZESSING ERCHSTECTURE
EVALURTION SIMJLETION
TINTIFICATION

TT AN IVPROVED
SEIMITECTURE

canZioenn
€0 UTER
ARIMITECTURES |

Figure 4.1-1. Network Analysis Procedure

VERAC




Mission analysis and process definition, as described previously in
Section 3, provided a formal description of the process, scenarios and
requirements. These served as two of the major input segments to the
Processing Architecture Evaluation Simulation (PAES). In the instance
of the previously developed candidate computer architectures -
Centralized and Thread - available descriptions were used to identify
necessary data to define architectural inputs for PAES.

In the instance of the Hybrid Architecture, process loading
analysis (Section 3.6) and results from the assessments of the two other
architectures were used to synthesize the design. The corresponding
architectural inputs for PAES were then identified.

In using PAES, two aspects of the characterization of architectures
are worthy of note: (1) machine speed, and (2) representation of
architectural effects.

In the VERAC model of the PRIMITIVES, algorithm size is set in
terms of MLI's with the followng first cut assumptions:

Assumption 1: The CDC 7700 operates at 12.87 MIPS when executing
a specified "BMD mix" of software.

Assumption 2: Because of the optimization in the design of the
control sections of the 7700, fixed point
instruction mixes are executed about as fast as
floating point instructions, i.e. at 12.87 MIPS.

Assumption 3: The full process simulated on PAES has the same
instruction mix as the “BMD mix" used for bench

marking.

These three assumptions allow use of McDonnell Douglas-generated timing
data for the determination of algorithm size.

Algorithm size (in MLI) = 12.87 Ta’




T — -

where: Ta is the execution time for the algorithm code set as
measured in the CDC environment (in seconds).

A further set of assumptions allow us to relate algorithm size to
the performance parameters appropriate for the distributed processing
environment:

Assumption 4:  Smaller computers perform at half the rate for
instruction mixes rich in floating point operations

(filtering, correlation) compared with mixes that
are predominately fixed pont (e.g. formatting,
control logic).

- Assumption 4 indicates a skew in total computational time required
towards the time required by floating point algorithms as we drop from
very large computers to smaller computers. A transform paramter x is

used to adjust for this skew: !

x = Equivalent MLI, (EMLI) for the floating point
instruction mix.

0.5 x = Equivalent MLI for the fixed point
instruction mix.

Parameter x has been determined by holding constant the total number of

equivalent instructions executed in a scenario for the COC 7700
implementation and the distributed processing implementation.
Experimenta) evaluation of x using simulation PAES has given:

x = 1.064
Note, as an aside, that this experiment has given a measure of the mix

of floating-point type and fixed-point type algorithm instructions
executed during a scenario. Let f be the fraction of executed
instructions that are of the floating-point-mix type and k be the number

of instructions. Then
1.064fk + 532 (1-f)k = k,

from which we find,

QR YERRS

f = .88,

I A C e A




Thus, 88 percent of the site defense instructions executed are in
algorithms of the floating-point-type.

We have used the equivalent CDC 7700 ML1, designated EMLI, as the
performance measure for architectures

1 algorithm step = 0.532 EMLI
of fixed-point type

1 algorithm step = 1.064 EMLI
of floating-point type

If it is assumed that the BMD instruction mix is similar to a
standard benchmark mix such as the Wheatstone, then the results reported
herein, in EMLI, can be held to be equivalent to benchmarked
instructions (e.g., for example, assuming the CDC 7700 would test at
12.87 MIPS using the Wheatstone benchmark). However, becuase of the 88
percent content of arithmetically oriented code in the BMD, the standard
benchmark ing would be expected to give a higher number (e.g., 13.5 - 15
MIPS for the COC 7700 by the Wheatstone). We will present results with
EMLI because of the lack of benchmarks that relate the BMD code to a
standard. The reader may interpret these results as benchmark MIPS, but
the above caveat should be kept in mind.

Computer architectures, with associated communication buses, have
finite capabilities for processing and transferring data. In PAES,
these effects are represented by architectural effects models
corresponding to

] operating systems
® bus protocols
. resource access (e.g., shared memory).

PAES was developed for this effort to have an essential but limited
capability for representing these effects. In particular, a simple,
“fixed allocation” operating system model was implemented which assigned
a fixed processing power to each PRIMITIVE thorughout the scenario.
Generally, the allocation to each PRIMITIVE was sufficient to avoid




queueing. Thus, we did not attempt to identify congestion effects of
realistic, finite computing resources. Rather, we measured the cpu
requirement necessary to avoid queueing.

Our assessment of distributed processing alternatives lead us to
believe that delays in data transfers would be substantially less than
the processing times on threads. Correspondingly, we did not implement
delay models for bus protocols or resource access, and therefore
developed no measures from PAES for these effects. In the discussion of
the Hybrid Architecture, however, we do address bus communication delays
through simple analysis.

It is to be emphasized that PAES is capable of accounting for
delays caused by queueing and architectural effects. Realistic
evaluation of such effects only requires a modest further development of
the associated architectural effects models.

4.2 Evaluation of the Centralized Architecture

Orginal development of the BMD data processing subsystem was based
upon implementation on a single large computer - the CDC 7700. Our
first architectural evaluation was of a representative Centralized

Architecture. The key feature is the sharing of a single cpu by all
processing functions. In this respect, it is noted that this deviates
from the two-cpu architecture of the COC 7700. Further, no attempt was
made to represent other COC 7700 environment effects, such as the use of 1
T0S (Tactical Operating System) and the data and instruction code

. transfers between the LCM (large core memory) and each of the two SCMs
(small core memories).

Results are displayed in Figure 4.2-1 for the single-spike and
double-spike scenarios. There, 60 ms smoothed cpu utilization
requirements are displayed. Peak requirements are seen to be 34.05 MIPS
for the single-spike scenario and 32.50 MIPS for the double-spike
scenario.




34N3993 1Yoy PIZL[LAJUI) U04 uofIeZi|}3IN ndd

oj4eudds 3ypds-aLgnog (9q)

338 NI 3WIl
el 8 14 0
3 1 4 0
|
g LGl
- 0F
- St

(SdIW) NOILVZITILA NdD

*1=2°p unb4

o0jaeudds aypdg-aibuts (e)

J3S NI 3MWIL

F Sl

- 0¢

- Sb

(SdIW) NOILVZINILN NdI




The centralized environment has the advantage of having the full
cpu processing available to all processing needs. With a responsive
operating system (such as TOS), processing power can be allocated as
needed in the particular scenario. This flexibility is had at the cost
of a compiex operating system which can introduce very substantial
overhead (as is the case in the COC 7700 implementation). To provide
some means of comparison with the other architectures, we assume an
overhead cost of 40 percent, so that we obtain the total cpu
requirements as indicated in Table 4.2-1.

Table 4.2-1. Cpu Reguirements for the Centralized Architecture

Scenario Application | 40 percent | Total cpu
Requirement Overhead Requirment
(MIPS) (MIPS) (MIPS)
Single-Spike 34.05 13.62 47 .67
Double-Spike 32.10 12.84 44 .94

4.3 Evaluation of the Thread Architecture

The first significant development of a distributed computer network
alternative to the CDC 7700 architecture was the Thread Architecture
design made by McDonnel-Douglas [3]. The unit-level portion of this
architecture is displayed in Figure 4.3-1. There, 17 computers and the
major control flow interactions are indicated.

In Figure 4.3-2, the allocation of PRIMITIVES to the nine
functional NODES of the thread architecture are indicated. (The
details, i.e., specification of PRIMITIVES, can be seen by examining
Figure 3.3-2 which is a larger version of Figure 4.3-2 with PRIMITIVE
names.) It will be noted that two NODES contain more than one
computer: NODE TI contains two computers (Nos. 5 and 6); and NODE 0TOD
contains eight computers (Nos. 8-15). In using PAES, we measure NODE
cpu requirements and leave details of local NODE operating systems for
future analysis.

QuEnas

[}




—~ sV Qf_—' T 01‘1 -~
j ®

0}
@ OT CONTROL ™| MICRO ;
RADAR ‘.'
o °
iomo MACRO

IC [——J

Figure 4.3-1. Thread Architecture

Results of PAES evaluations for the two scenarios are given in
Table 4.3-1. Summing the peak NODE cpu requirements yields requirements
of 51.83 MIPS for the single-spike scenario and 45.01 MIPS for the
double-spike scenario. We have also attempted to account for operating
system overhead here. Since the number of functions supported within
each NODE is much smaller than in the centralized environment, we have
assigned an overhead of 20 percent in order to arrive at total cpu
requirements. These requirements are also indicated in Table 4.3-1.

Further detailed results in the form of sampled and smoothed cpu
requirements for each NODE and each scenario are provided in Appendix C.

4-8

TV WS W

S




NINE PROCESSING NODES

3

- 1
i1
° o,
1O

>—

Py SR P

e €9 =

———

ONE "RADAR" NODE

RADAR ——

- emon] e CD e o | ——— -
e ey e B

!
|

‘5!4:!10‘0;

Ly
°

A

- OO ®-@- |

e

O -

?ﬁ

ot

1P

IC

——d e

Allocation of PRIMITIVES to

NODES of the Thread Architecture

Figure §4.3-2.

QD YERAS

49

B L L T




R N

Table 4.3-1.

Cpu Requirements for the Thread Architecture

(a) Single-Spike Scenario

NODE Application 20 percent Total
Requirement Overhead cpu Requirement

(MIPS) (MIPS) (MIPS)

RRA 0.65 0.13 0.78

MACRO 3.20 0.64 3.84

MICRO 1.98 0.40 2.38

sV 4.12 0.82 4.94

TI 3.72 0.74 4.46

REDUND 1.43 0.28 1.71

070D 28.92 5.78 34.70

IC 7.45 1.49 9.94

IP 0.36 0.07 0.43

TOTAL 51.83 10.34 62.17

(b) Double-Spike Scenario
NODE Application 20 percent Total
Requirement Overhead cpu Requirement

(MIPS) (MIPS) (MIPS)

RRA 0.59 0.12 0.71

MARCO 2.91 0.58 3.49

MICRO 1.82 0.36 2.18

sV 2.24 0.45 2.69

TI 3.63 0.73 4.36

REDUND 1.35 0.27 1.62

0T0D 24 .66 4.93 29.59

IC 7.45 1.49 9.94

e 0.36 0.07 0.43

TOTAL 45.01 9.00 54.01

4-10

A

e e et . ek -




4.4 Design and Evaluation of the Hybrid Architecture

In this section, we present in detail a recommended architecture,
which we shall refer to as the Hybrid Srchitecture due to the mixture of
types of network architectural elements present. This architecture was
developed by VERAC as a result of its analysis of the process to be
supported, and its assessment of other architectures. Again, PAES
evaluation of cpu requirements are presented. Further, in this
instance, we address additional design details related to the
organization of control, bus loadings and database management.

Figure 4.4-1 presents this Hybrid Architecture. The principal of
the design is to use a parallel computer architecture with a central
memory for the data base for the bulk of the processing, and to use
special purpose processors to handle control and scheduling.

4.4.1 Functional Partitioning

Figure 4.4-2 presents the functional partitioning for the system.
The RRA and SCHEDULER functions are set in distinct nodes. A parallel
set of THREAD processors is represented as the AGGPRO NODE. Two
additional processor types are included in the system model of Figure
4.4-1: the Unit Resource Module (URM) and the Memory Processor (MEM).
These have not been sized. However, their functions are described in
following subsections.

4.,4,2 PAES Evaluation of CPU Requirements

Results of PAES evaluations for the two scenarios are given in
Table 4.4-1. Summing the peak NODE cpu requirements yields requirements
of 34.10 MIPS for the single-spike scenario and 32.55 MIPS for the
double~spike scenario. Note that these figures are only slightly larger
than the results for the Centralized Architecture. As was observed in
the loading analysis of Section 3.6, the organization of processing
involved in this Hybrid Architecture retains almost all of the

VERAC

- 4-11

© e e s e ee e mae o




it nsiihnne

sng

105592044 pangiaIsig asuajag 934s
OW8 243 403 yoeouddy }ean3dajlydly papuaumioddy °-p°y a4nbiy

id

SN oy

e 2 5 ¥0SS320Ud GYIYHL e
e ——— J0SS3I20¥d OVIYHL « P
< > JDSSIN0¥d AYOW3IN < >
Jou1N00 S8 ) I TN R
¥0SS308d ; HOSS3204d
.““... ONITNAIHIS NOTLIVINWISSY
35Nd ¥yYavy D NYOLIY Yvavd

JIVAYIUINI %

¥0$S3304d/4vOVY

AN GESNY  SEaRy SLSENAND GRS St SwSva

Win

SN N

1-18-£T0-WI

4-12




RADAR

TAbARI/PRLce

——-—-‘

SIAR(M
Mnne
N Ation

2

RAA HODE

JRTRIIN
sile, 1 !

Aat
R SN 79

¥ 4]
T KN,

. N
a®\‘h
[ ¥ 1q]
M 11881 J~(‘ . o

LT o]
Fyoe [ 2™ 1Y ", ,’l;.\r f\wl"r ") 4 8 o @

nilarie o ™).
[~ )0 -3 =/ \"_K @—-—

: : Figure 4.4-2. Allocation of Prim;t_’i:\;es to Nodes of the Hybrid Architecture

L_-A . ) T -
iln, b

bk a
e




Table 4.4-1.

Cpu Requirements for the Hybrid Architecture

Single~Spike Scenario

h .

NODE Application | Other Total
Requirement | Loading cpu Requirement
(MIPS) (MIPS) (MIPS)
RRA and CONTROL 0.65 0.50 1.05
SCHEDULER 5.18 0.20 5.38
AGGPRO
(thread processors) 28.27 2.83 31.10
TOTAL 34.10 3.53 37.63
Double-Spike Scenario
NODE Application | Other Total
Requirement | Loading cpu Requirement
(MIPS) (MIPS) (MIPS)
RRA and CONTROL 0.59 0.50 1.09
SCHEDULER 4.73 0.20 4.93
AGGPRO
(thread processors) 27.23 2.72 29.95
TOTAL 32.55 3.4? 35.97
4-14

RN |




I

efficiency of shared processing associated with a single cpu
architecture. The critical assumption is that the CONTROL function can
be designed to efficiently use the multi-processor AGGPRO NODE.

Also indicated in this table are "Other Loading" cpu requirements.
In the RRA and CONTROL NODE, this other loading corresponds to the
control of radar return pulse processing, as described further in
Section 4.4.3. In the SCHEDULER NODE, the other loading is associated
with control of the PR bus, described further in Section 4.4. And for
the AGGPRO NODE, we have assigned an overhead of 10 percent. This lower
figure (compared to 20 percent for Thread Architecture nodes) is related
to the very simple operating systems required for thread processors.
A1l the complex "tasking" is taken care of in the RRA and CONTROL node.

4.4.3 RRA and CONTROL NODE

The RRA and CONTROL NODE provides the validation check of a radar
return (VLD.). Additionally, this processor schedules use of the local
processors and cancels local tracks, (OTRCHK, FRGCHK, DCYCHK). Figure
4.4-3 depicts the data flow and processor structure for the recommended
approach.

When a pulse transmission request is sent to the radar by the
SCHEDULER, the SCHEDULER a1§o forwards a packet of descriptive data to
the RRA processor. This packet contains the related track or group ID
(it is named the "ID Packet") and the pulse-type data. The RRA
processor uses the track ID information to search a list of track kill
requests. If a track is to be killed, this information is put in the ID
Packet in preparation for processing the pulse that is to be received.
The first function performed by the RRA on a return pulse is the
validity check against the ID Packet (VLD.). The ID Packet is appended
to the return information at this point.

The second function performed by the RRA on a packet is the
assignment of the return to a THREAD Processor for processing. The
assignment algorithm uses a PROCESSOR STATUS 1ist kept by the RRA
processor,

VERAC

- &=10




|
|

et —— A o e e <+ < r = cm— - ——

IM~-013-81-6

RADAR PULSE
RETURN DATA

VALIDATION e [D PACKET

VALID N~
RETURNSl - KILL TRACK

COMMANDS

SCHEDULING

SCHEDULED L
RETURN PROCESSOR

(PULSE PACKET) STATUS

(a) Data Flow

RADAR
)

e 2.5 MIPS RRA | RC BUS
| o 8k/16b INST MEM VALIDATION 1T
l e 8k/16b DATA MEM STAGE |
| I l
| - 1 1
| o 2.5 MIPS RRA

o 8k/16b INST MEM CONTROL |

o 8k/16b DATA MEM STAGE

|

(b) A Special Purpose Two-Stage Processor Implementation

Figure 4.4-3. The RRA and CONTROL NODE Structure

4-16

. N ' " > D




THREAD Processors are not, in general, assigned to specific
function types or to specific tracks. These processors are viewed as
being structured to perform any of the functions contained in the THREAD
NODE. the RRA Processor selects a currently idie THREAD processor and
sends the pulse return with appended ID to this processor. The packet
so transmitted is called a "Pulse Packet". There are two possible
exceptions to this treatment of a pulse return that can be considered.

We have included as part of the RRA processing, in our approach,
the interdiction mechanism required to drop a track. The kill request
information is simply included with the ID and appended during VLD.
processing. During scheduling, a kill request in the packet is noted
and the RRA responds by sending off a packet indicating that the track
has been killed (i.e. not forwarded for processing). This approach
integrates the track kill mechanism without requiring a new or special
algorithm stage.

The second exception to be considered is the case for returns that
are associated with intercept (0T5 tracking and IC). This processing is
sensitive to memory access times. Thus, it may be appropriate to
transfer to, and maintain the target and interceptor tracks in,. the
memory of a THREAD processor. 1In this case, the processor identity
would be carried in the 1D Facket. The RRA processor would note the
assignment in the ID appendage to the return and would route the return
accordingly. ‘

Fault tolerance is a major factor in the processing architecture
recommended. The parallel THREAD processors can perform self-test as
assigned by the Scheduler. Processor status determined by the
self-tests can be returned to the RRA Processor and entered along with
the measure of loading into the THREAD Processor Status Table. Also,
fault detection by a THREAD Processor would be reported in this way.

This structure allows faulty THREAD processors to be removed in
real-time without significant impact or overhead on the ongoing system
performance. Since the main segment of the system is the set of THREAD
processors, this structure relieves much of the cost and risk associated

mrning extremely reliable individual processors.

&=/

e L I T T < T NS U Ay -




—— - e mme— e ———

4.4.4 The RR BUS

The RR BUS transports the pulse return data ("Pulse Packet”) from
the RRA Processor to the assigned THREAD Processor. The MEM Processor
also picks up the Pulse Packet. The RR Bus transports track data from

MEM to the THREAD Processors as required. Additionally, control and
status data is returned via the RR BUS to the RRA Processor. The RR BUS
bandwidth is determined by the maximal pulse rate. The principal loads
on the RR bus are the pulse return packets and the track records used by
the thread processors. Each packet and track record is taken to be 150
32-bit words, i.e., 4800 bits. The bandwidth requirement shown in Table
4.4-2 is based on these data sizes. This BUS could be easily
implemented with a 32 bit wide, 1Mwps architecture. This architecture
would easily support a radar rate of as high as 10,000 pps.

Table 4.4-2. Bandwidth Requirements at
2000 pps for the RR BUS

Function Rate
Pulse Returns 9.6 Mbps
Track/Group Packets for Filtering 9.6 Mbps
Correlation Track Packets 4.8 Mbps

(10 correlation candidates /request o
100 requests/sec.)

Status Reporting (320 b/report) .64 Mbps
Total 24 .64 Mbps
4-18




"ﬂ!!!lIlIHIIIIIII-III-..--fT‘

The RR Bus is under the RRA Processor control. A simple protoco)
is to have capacity assigned in TOMA fashion for pulse returns and
additional capacity available by demand access for correlation data
transfer. This structure is shown below.

IM-013-81-7

1 FRAME

seclefafbfvfcfalalal eee
a: Pulse Packet (150w) f
b: Track/Group Packet (150w)
c: Correlation Packet (150w)
d: Status/Request Return Set (10w/Thread Processor)

This simple protocol can work effectively because of the very uniform
rate of radar returns. This protocol would provide a transfer in under
1 ms for each packet.

4.4.5 THREAD Processor

The THREAD Processors are collectively given the capability to
perform all of the functions in the AGGPRO NODE as specified in Figure
4.4-2. These are:

(1) S/V Processing

(2) TI Processing

(3) 0T Processing

(4) Correlation/Discrimination
(5) Intercept Planning

{ (6) Intercept Control.

i The total instruction code for the thread functions is estimated to
be 160,000 32-bit words. If each THREAD processor has instruction and
data storage capability of 256,000 words, every THREAD processor could
have the capability to perform every thread processing function. 1If

QYERRS

L - T - T——— 8 NS 1 GRS T e——

3-19




less memory is available, it would be necessary to allocate portions of
the thread functions to THREAD processors. By taking note of the load
phasing as depicted in Figure 3.6-10, it should be possible to provide
an allocation which requires only slightly more total cpu capacity than
the minimum necessary if all THREAD processors were fully capable.

The specific function or "task" to be performed by the processor is
determined by the RRA when it schedules return processing and other
activities. Typical tasks are the filtering and processing associated
with a TI or OT return. Other tasks assigned are correlation, intercept
planning, and intercept control.

Pulse packets are sent to the assigned processor by the RRA., These
packets are also received by the Memory Processor, MEM. The MEM
processor retrieves from the track data base the track information used
in filtering. This data is forwarded, as a “Track-Packet" or
"Group-Packet", on the RR BUS to the assigned THREAD processor. This
scheme allows the memory access to be carried out while the THREAD
processor is unpacking the Pulse Packet. Figure 4.4-4 shows the data
flow that is associated with pulse return processing.

The THREAD Processor processes the pulse return data. Typically a
new pulse request is generated (.PLS) as well as an update made to the
track/group data base. This is shown in Figure 4.4-4. The THREAD
Processor outputs are transmitted on the Pulse Request (PR) BUS.

Several control sequences are required to implement the flow of
control. These relate to:

(1) Tracks that are killed directly during the pulse return

processing:

. TIBDED Angle Group Deletion
° 0T1 Ghost Detection

® 075 Intercept Complete

° AQD Decoy Detection

) MG (IC) Intercept Complete

4-20




IM-013-81-8
PULSE PULSE
RETURN COMARD
RRA MEM SCHED

©

TRACK/GROUP
PACKET

PACKET

@ DATABASE

UPDATE

COMPLETE
REPORT

THREAD

EVENT SEQUENCE

0 Pulse request to assigned processor and memory

0 Track accessed from database to assigned processor
@ Next pulse request and, @ completed status to RRA
o Update database

Figure 4.4-4. Data Flow for Pulse Return Processing

RAC

omnted

¢ e A — e ot 3 e eweeww VRGN NF S - -




LA

(2) Correlation:

[ TI10T
0BJCOR

(3) Discrimination

. POD, Passive
AQD, Active

(4) 1Intercept Planning

. Intercept Plan Status QOutput
. Implementation Response

Tracks that are killed directly during pulse return processing (as
contrasted with killed because of correlation or discrimination
processing) are deleted by means of a marked track data base update sent
from the THREAD Processor to the MEMORY Processor —— just as occurs
during a normal data base update as shown in Figure 4.4-4. The MEMORY
Processor either deletes the track entry or, if required, leaves the
marked entry in the database for use by the URM.

Correlation processing is shown in Figure 4.4-5. The correlation
functions are not as response-time sensitive as the pulse return
processing functions. Thus, the objective of the approach is to
minimize conflict with these higher priority functions. This is
accomplished by two features of the approach: (1) Scheduling of
correlation is by the RRA. Thus, the priority of the function is
weighted against other system needs; and (2) The sifting of the track
database for "close" tracks is done off-line. It would be appropriate
for the RRA algorithm to age the request to allow time for this database
sift.

A wide associative memory is a natural structure for the track

database. With this structure the MEM Processor would have a very easy
time marking the "close" tracks to be accessed.

4-22




RRA MEM

THE MEMORY PROCESSOR

PERFCRMS A SEARCH

FOR ALL CLOSE TRACKS
® AT NOTIFICATION

CORRELATION
REQUEST

(TIOT OR OBJCOR)
THREAD

(a) Initiate Correlation
(TIOT OR OBJCOR)

RRA MEM

@ PULSE

?gggggULES CORRELATION
CORRELATION) TRACK & CANDIDATES
LY \
\ THREAD
POSSIBLE TRACK ~~~ w_
KILL REQUEST
(CORRELATION) (b) Correlation Execution

Figure 4.4-5. Correlation Processing

QYERas

—

iIM-013-81-9

CORRELATION
NOTIFICATION

DATABASE
UPDATE

T S )




When a THREAD Processor is assigned for correlation, the MEM
Processor simply transfers the track to be correlated, and the
associated "close" tracks. The THREAD processor performs the
correlation, updates the database and, if appropriate, request that the
RRA kill the track.

A second approach is to have the Memory Processor perform the
correlation. However, this would put a heavy additional computation
load on the processor. We believe that a sleek special processor
oriented solely toward database management will prove most cost
effective in this area.

Passive discrimination normally (.975) results only in an update of
the database that indicates that the object remains unclassified (see
Figure 4.4-6). However, fragment identification would cause a kill
track request to be issued to the RRA. Also, certain track
characteristics cause the initiation of active discrimination.

Active object discrimination is a pulse return processing thread
and is controlled identically to S/V, TI, and OT pulse return
processing. This processing has a longer response time requirement.
Thus, it has a lower scheduling priority.

Intercept planning is initiated from AOD. This could either be
initiated by a request to the RRA Processor or possibly be included
within the AOD processing task.

4.4.6 Pulse Request (PR) BUS

The PR BUS transports data between the THREAD processors and the
Memory Processor (MEM) for update of the database. This BUS also
carries Pulse Request Packets to the SCHEDULER. The loading on the bus
can be upper bounded by examining the maximum pulse rate of the radar.
At 2000 pps the BUS loading would be:

4-24




IM-013-81-10

RRA MEM

(:)POD

REQUEST
THREAD

(a) Initiation of Discrimination

RRA MEM

DATABASE

@ UPDATE
TRACK AND
PASSIVE DISCRIM

FILE

POSSIBLE AO[

b\ PULSE REQUES
. POSSIBLE TRACK™S THREAD ~
! KILL REQUEST _--
( FRAGMENT) - -

(b) Passive Discrimination Execution

Figure 4.4-6. Discrimination Processing

VERAC




AD=-A108 589 VERAC INC SAN DIEGO CA F/6 15/3.1
AN ANALYSIS OF MMCS NETWORK ARCHITECTURES TO SUPPORT THE DATA P==ETC(U)
DEC 80 J C TIERNAN DASG60U=80=-C~0017 .

UNCLASSIFIED R=008-80




0 s g
. 32

= .
S e

Wf—:

= [l e

Hlllo

MICROCOPY RESOLUTION TEST CHART
.
NATIONAD KA Db O ANDRR[YL T A




Pulse Request Packets (1600b/packet) 3.2 Mops
Database Updates re pulses 9.6 Mbps
Other Database Updates {Correlation .48

and Discrimination)

TOTAL 13.08 Mbps

If the same bus architecture was used as with the RR BUS (1 Mwps/32b),
capacity is available for a flexible demand access protocol and for a
significantly higher radar pulse rate. This is within present
technology limits.

4.4.7 SCHEDULING Processor

The Scheduling Processor takes pulse request packets and schedules
pulses to the radar on a priority bases in accordance with pulse rate
and energy constraints. The rate and energy constraints are set by the
URM Processor and downloaded by means of the Resource Control (RC) BUS
to the Scheduling Processor (see Figure 4.4-1).

The Scheduling Processor formats and sends pulse commands to the
RADAR. It also sends, for each pulse requested, an ID Packet by means
of the RC BUS to the RRA Processor.

The applications loading for the SCHEDULER is slightly less than 5
MIPS (Table 4.4-1). However, the functional requirement can be divided
into MICRO and MACRQ Scheduling stages in order to lessen the cost of
the implementation. Thus, two serial 2.5 MIP processors appears to be
an attractive implementation of this NODE.

4.4.8 Memory Processing/Database Structure

The architectural approach of Figure 1 includes a special purpose

Memory Processor (MEM). This processor performs the following functions:

(1) Responds to Pulse Return Packets containing radar return
information by fetching and placing the appropriate

4-26

!

neamiatiiiiiit e aten PO




Track/Group database entry on the RR BUS or by deleting
killed entries.

(2) Responds to Database Updates Packets by updating the related
entry or by deleting killed entries, if appropriate.

(3) Responds to Correlation Notices by searching the track
database for objects that are close to the object to be
correlated. Objects that are found to be "close" are tagged

L or noted in a list in preparation for retrieval.

(4) Responds to Pulse Return type packets that indicate
correlation or discrimination by placing the track entry and
related entries on the RR BUS.

(5) Responds to URM queries .y placing requested track data on
the RC BUS.

The memory processor is given functional responsibility only for
processing that is intimately associated with the management of the
central database.

There is a natural organization of the database memory into
addressable words of 4800b/w.--the size of a single track or group
_entry. 11 or 12 bits of address would be required with this structure,
The address might easily correspond to the track number. Content
i addressability is required for rapid determination of “closeness" for
the correlation approach that we have advanced.

VERAC

incorporated FRLY]




5.0 CONCLUSIONS

The Hybrid Architecture advanced here offers a number of singularly

attractive characteristics:

(1)

(2)

(3)

(4)

QIERAS

The approach allows the shifting of the functions addressed
by a computer during a scenario so that the system loading
remains balanced, and no processing capability is idle during
peak loading.

This characteristic depends on the centralized pulse-return
scheduling function located in the RRA, to retain the
simplicity of design, and the centralized database structure.

Fault tolerance is embedded in the parallel design. THREAD
processors are envisioned as performing constant on-line
testing. When a fault is reported by a nrocessor to the RRA,
this THREAD Processor is immediately descheduled. The
problem of providing high processor reliability is then
concentrated on the special-purpose RRA, MEM, and SCHEDULING
processors.

This characteristic depends on the centralized scheduling and
the comptetely redundant structure of the proposed THREAD
processors.

The computing speed of the THREAD processors need not be over
0.5 MIPS, except for end game processing, where 1.25 MIPS
processors are required. Thus, the actual capability
selected for these processors would be based on a
trade-analysis of cost, redundancy, and operating system
complexity. Thus, there is an opportunity to minimize cost.

Maximum loading of the processor segments is determined by
the radar pulse rate limit. Thus, simple protocols for the
BUSSES, and MEM, RRA, and SCHEDULING processors can be
jmplemented.




The architecture requires a 1 Mwps at 32b/w BUS on the input
and an identical BUS on the output. Given 10
accesses/pulse-return as a bound, 20,000 access/sec (50
u~-sec/access) are required to support a 2000 pps radar rate.
These data and access rates are easily obtained with present
technology. '

(5) Both the RRA and SCHEDULING processors are special-purpose
processors with control structures dedicatd tg performing the
required algorithms. These processors, and the MEM
processor, would be designed with emphasis on fault
tolerance. The RRA and SCHREDULING processors both are
impiemented as two-stage processors. The URM might also be a
special purpose processor.

The architecture can be contrasted with the Thread Processing
Architecture or the Centralized Architecture that were also examined in
this study.

The Thread Architecture has a limited number of functions assigned
to each computing NODE. This requires that redundancy be added to the
NODE structure in order to achieve high reliability. The redundancy can
be provided for a NODE either internally to each processor, or by
providing multiple processors. Also, distinct hardware and software
components may be required for different NODES, increasing the cost and
complexity of design and development. A Thread Architecture has the
characteristic that substantial application processing capability is not
being used at the maximum loading point in the worst-case scenario.

The Centralized Architecture has the major fault of not taking
advantage of the response-time/throughput loading disparity
characteristic of the Site Defense Problem. The processing power must
support the peak throughput loading. A very powerful and costly
processor must be provided to meet this load. Managing the central
- processor requires a significant operating system overhead in addition.




VERAC has analyzed the loading and throughput requirements for the
BMD Site Defense Processor. This analysis has motivated the development
of an approach to the processing architecture that is characterized by
parallel processors scheduled in real-time to perform needed functions.
The approach also depends on a central, track database managed by a
dedicated processor, and on a single scheduling and control point.

QEERAS

- - B i e i

dohdadion N - e ‘._A

-
1




Ry (ot E L

(1]

[2]

(3]

(4]

REFERENCES

"Computer Program Configuration Item Preliminary Part 11
Specification Engagement Software, Volume II, Books 1, 2, and 3,"
TRW CI 11982-10751019, dated 22 October 1973.

"BMD System Technology Program Product Specification for Computer
Program Engagement Software, CR3, Volume II, Books 1, 2, 3, 4, and
6," TRW CI 17773-10751019B, dated 1 July 1973.

"Advanced Data Processing Subsystem Investigation, Mini/Micro
Computer Systems Evaluation Resuits,” Volume XVII, MDAC Document

No. MDC G8418, 7 December 1979.

“"April, 1978 Process Design Snapshot Report for Cycle 6 TAP," TRW.




— TR

Appendix A

Detailed Process Description

VERAC

L SR e rg——— L fT e u e e . . .
!

J—— .
5 N " . ok )




This Appendix provides a functional representation of a portion of
the BMD terminal defense data processing. The portion represented
includes radar assimilation and scheduling, S/V return processing, angle
group tracking (track initiation), object tracking and discrimination,
intercept planning and interceptor control.

The functional representation consists of a set of PRIMITIVES, each
of which is intended to represent a logically cohesive unit of
processing. Each PRIMITIVE indicates procéssing inputs, outputs,
processing load (CDC machine language instructions or MLI), significant
accesses to data files, and the evolution of instances at the output of
each PRIMITIVE.

This process description was derived from available documents, from
extensive technical discussions with McDonnel-Douglas personnel
(particularly Dr. Shiang Liu), and, where necessary to fill gaps, from
estimates based upon a general understanding of the problem
environment. In particular, the sources are as follows (and are
referenced to the associated number in the remainder of this appendix):

- References for data items

(1] "Computer Program Configuration Item Preliminary Part 11
Specification Engagement Software, Volume II, Books 1, 2, and
3," TRW CI 11982-10751019, dated 22 October 1973.

[2] "BMD System Technology Program Product Specification for
Computer Program Engagement Software, CR3, Volume II, Books
1, 2, 3, 4 and 6," TRW CI 17773-107510198, dated 1 July 1978.

{3] *“Advanced Data Processing Subsystem Investigation ,
Mini/Micro Computer Systems Evaluation Results," Volume XVII,

MDAC Document No. MDC G8418, 7 December 1979,

(4] “April, 1978 Process Design Snapshot Report for Cycle 6 TAP,®
TRW.

A-2

e ey




B A aiiad ont 2o 2ahe SatoN e P o

|53 Private communication with S. Liu, McDonnel-Douglas.

[6] Estimate

A-1 Processing Loads (Timing Models)

Available software documentation ([1] and [2]) provides timing
models for much of the terminal defense data processing. These models
were obtained by linear regression applied to individual processing
TASKs. Results are expressed in usec as executed on a CDC7700. For
purposes here, the resulting equations are more detailed than necessary.
We obtained simplified forms by eliminating relatively insignificant
contributions and otherwise focusing on principal effects. Generally,
this left us with a model involving a dependence upon a few
scenario-dependent parameters.

In the individual PRIMITIVE descriptions, these simplified timing
models are given. When scenario-dependent parameters are involved,
ranges and nominal values are provided to arrive at specific CDC7700 MLI
processing loads.

As available timing models pertain to entire TASKs, whereas several
PRIMITIVES were generally identified for each TASK, it was necessary to
estimate the separate processing loads for individual PRIMITIVES by
partitioning the TASK total.

The Radar Returns Assimilation and Radar Scheduling timing models
were supplied to us by McDonnel-Douglas [5], as the available linear
regression model {1] was not useful to us. In the case of the
scheduling function, we divided the processing load associated with
Macroscheduling and Microscheduling evenly (based upon existing results
which indicate a nearly equal throughput requirement for these function

(31).

VERAC

osaled

.




e A

T T TR e T e R TR e

S B

A-2 Data Access and Transfer

Two mechanisms are used in the PRIMITIVES to represent data access
and transfer as illustrated in figure A-l1. The "direct" mechanism is
associated witn input and output queues. The associated data transfers
are then on the communication links between PRIMITIVES. The "indirect"
mechanism is illustrated in figure A-1 by

write
group files
(file DPA)

Here, the channel for movement of data is not explicitly modeled.
Rather the processing delays and contention for resource are modeled by
reference to an external resource or levice.

Generally, we associate to the outbut queues all data which are
needed immediately by a subsequent PRIMITIVE. Corresponding inputs have
associated the same data. Other data accesses and transfers, for
example, to and from an object track file, are represented by the
"indirect” mechanism. .

Note that the "direct" transfers are not necessarily implemented in
a particular architecture by a direct communication link. In the
existing CDC7700 architecture, for example, essentially all data
transfer are through the LCM (large core memory).

A-3 Process Evolution Principles

As presently constructed, PRIMITIVES involve a number of
scenario-dependent parameters related to the evolution of the status of
ohjects (and interceptors) as they are detected, tracked, classified and
i, ‘ept . These parameters appear in the final splitting to obtain
outputs in each PRIMITIVE.




mem:ngw c:mmmmuummumvm:muzmmw;umggommEm_zc:umE
oM} buijeaasnii ‘dYoNY JAILIWI¥d T~V d4nbiy

W 02z Sa (duf “
(b-2) € 9N
(s1-9) o1 Oy -

sJ4djaueded (eulwoy

uiniaa A/sS
suamad A/ utod BulIR0Ly  pocan0udead
sdnoub | pas55300ud 4 9 qQ : ;
T . \ . 1MW N uwH ¥ (6u} ssa30.4da.d P
i) ~<{l{i— | s3] 14 sk N 00p + “NYSZ —<— Suanjad u01123313p) S
LINIL o 3|bUR 3 1aM 6utdnoab a(buy ddd¥q wouy m
L squony ASDYd ds “mw
sdnoub ¢ f
Leo1d£y ¢dnoub atbue .
4ad spiom €9 : _

o ——————— . ot e AP, P8 5.1 P

uogjouny buissadodd suanlas uog3dalag

Butssasoud dnoab ajbuy

QEERRS

dUINY  aA{3tutag




As PAES does not maintain the identity of individual tracks, a
flow-oriented representation of the process evolution is necessary. We
nave adopted a finite-state flow model. The process states are
indicated in Table 1. Objects begin in the state "SV", i.e., have
associated search/verify returns, and evolve through states Tl » 0T1 »
0T2 » 0T3 » 0T4 » 0TS » complete, as illustrated in figure A-2. Some
objects are dropped at an intermediate stage. Further, entering 0T3 is
associated witn the generation of active discrimination pulses (AOD),
entering 0T4 is associated with intercept planning and QT5, with
interception (MG).

These Process states have been identified to correspond to tne
principal functional decomposition of the process. In so doing,
approximations have been introduced. For example, in the interval
following object flight through the commit contour but prior to
interceptor launch, some objects have been classified as RVs, but others
have not., As the RV class is substantially larger than the set of
tnreatening but unclassified objects, we have chosen to ignore the
latter, effectively assuming that active discrimination (successfully)
classifies all objects before they reach the commit contour. Additional
refinement is, of course, always possible.

In figure A-2, the mean dwell times for each state are indicated,
e.g., .25 sec for state "TI". The sum of the mean times from initial
detection to completion of the intercept is seen to be 10 seconds.

Implementation of the process state model involves fractionally
splitting the flow at certain points in the process, typically, at the
output of a track filter primitive, or at the output of a discrimination
primitive. The parameters of the splitting are scenario-dependent and
are chosen according to two principles:

(1) to achieve the indicated mean dwell times in each process
state, and

A-6




w - - - ——— ~«--l-----“

(2) to achieve desired fractions of target and object types.

In the next section, we obtain general model relations to be used
in computing scenario-dependent splitting parameters.

Table A-1 Process Evolution States

SV search verify processing

Tl angle group tracking (track initiation)

0T1 | object tracking before any object discrimination

0T2 | object tracking with passive object discrimination

0T3 | object tracking with active object discrimination

0T4 | object tracking during intercept planning

0T5 { object tracking during intercept

POD | passive object discrimination for unclassified objects
(objects in state 0T2)

AD active object discrimination for unclassified objects
(objects in state 0T3)

Mo missile guidance

QYERAS




v

60

dead
group

0Tt

A
)

redundant

object ghost

0T12

A
)

fragment

013
1 SEC

A
0

decoy

oT4
3 SEC

)
\J<

075
6 SEC

TRACKING
PROCESSES

.70 SEC

.30 SEC

0BJCOR

redundant
object

fragment

decoy

DISCRIMINATION
PROCESSES

Fiqure A-2. Process Evolution

A-8

u— P o

.50 SEC

INTERCEPT
PLANNING

MG

INTERCEPTOR
PROCESSES

6 SCC

.




e g

Model Relations

The typical element of process evolution represented within a
PRIMITIVE is represented grapnically as follows:

Yl -
Y, evolution to new state
Yn
drop
further
processing B
remain in
this state

The first split in the processing evolution generally corresponds
dropping further processing (e.g., dropping redundant track). The
second splitting in the process evolution generally corresponds to
partial evolution to one or more new states. A fraction g of the
instances continue in the same state, while various fractions, )
cevs Yo evolve to new states. The mean dwell time, or number of work-
unit cycles through this PRIMITIVE for each work unit introduced, for this

exponential model is given by

T = [1-(1-a)8] }E: n(l - (1-a)e)"

n=1
= 1
1 - (1-a)8 (A-1)
VERAC
incorporated
=)




It is assumed that each instance either remains in this state or
evolves to a distinct new state, so that

ZH”-B

i=1

Note that evolution to a new state may generate multiple events so tnat
one might have, for example

——
;_ —O—

wnich is more directly represented as a replication:

o.
r O

b The assumed scenario provides "ultimate® fractions for each object
type. To obtain "single cycle" fractions, one must account for the fact
than an instance passes through the process repeatedly.

The ultimate fraction, ug corresponding to the single pass
fraction, ¢, is given by

A-10 -

(A-2)




—

1480 -a)+8 (1-a) + o
v = a[1es0-a Ca S e
° 1-8(1 - o)
first second third
pass pass pass

To solve (A-1), (A-3) it is convenient to let
g' = 8(l-e).

Then (A-1), (A-3), respectively, become

These are easily solved to yield

g =1.- 1
T
o -—-uo(l-B')

g =8'/(1-a).

If Mls cees My represent the ultimate frac;ions of states
evolving from the present state, so that

VERAC

(A-3)

(A-4)




it follows from (A-2) and (A-4) that

where

K = (1-8)/(1~u0)=1-8'.

Certain events are initiated once when a new state is entered. The
fraction associated with these events is also « , since the ultimate

fraction, a ratio to initiations of this state, is unity.

A-5 Process Evolution Model

In the following, we have extracted tnhose {sets of) PRIMITIVES with
scenario-dependent splitting parameters. Each parameter is identified,
and numerical values computed for them. These computations are based
upon the model relations presented in the previous section and the
scenario defined in Table A-2. The process assumptions are further
defined in Table A-3.

A-12




Table A-2. Assumed Scenario
0T} 072 073
No. ¥ Jaory| No. plaory [ to. {u faory
redundants 8 |.0571{ .004
ghosts 10 {.0714] .005
fragments 20 20 | .164| .016
.87141 .062 70 70 | .686] .035
decoys 70 836 085
RVs 32 32 32 1.314) .016
Total Objects| 140 122 102
Table A-3. Mean Times In Each State
State SV T1 0T1 0T2 0T3 0T4 0TS AD MG
mean time (ms) 100 | 300 700 | 500 | 1000 | 3000 { 6000 { 1000 [6000
associated 100 50 50 50 50 50 25 250 20
cycle time
# 1 cycles 6 14 10 20 60 240 4 | 300
g' .833 | .929 | .900 | .950 | .983 | .996 | .750 |.997
] .833 |.933 915 | ,983 | ,983 | .996 | .750 |.997
K .167 | .071 | ,085 | .050 | .017 .004 | .250 |.003
(ﬂEiJ:ﬁ!ﬂ"”‘"“ K
/
- — it




NOILNT0A3 AS

u4nlad A/S e wouy (€)
pajeasd sdnoub ajbue jo # "uz

DO OC




NOILNTO0A 1L

(6S1°)
dnoub o|bue 503 ue ui (2) aouanbas JO pua ade YoLym
payoeds aq 03 s3abdes o uaqunu ; Iy suan3aa IL 40 uoyjoeay : SO3LLy
| (awiy Lamp .
dnosb ajbue g03 (n) S{apow) anuLuod Yo ym (e€8”)
ue up s3abaey sso4d J0 saqunu Ly suiniad I Jo uoppoeay : g

(s3abuaey cu) atp yoym (800°)
suanjad 11 40 uoijdedy : QvidiL,

a3ag1l

- -

il

- ———— A § . ey Py W R S e




(¥SOHD ¢ _3uepuNq3Y

NOILNT0A3 110
IS0, (500°)

15046 3q 07 Punoy e YdLyM SYIedl 110 40 uorzoeay :LSOHI,

numoxon - umochﬁuﬁv % = (210 @3e3s 03 uojjisuedl

SNY} pue) UOLIRULWLAISIP 399[q0 aALssed 40y (290°)
P31 LUGNS 4R YOLYM SYJeu3 [J0 4O uorjdoedy 00d,

-1)> = 3593 ¥0JCEO 404 Pal3jugns AzN%uo )
ade YILUM S¥IB43 110 40 uopydeay 4094

(3wy3 L19mMp siapow) T10 se (ec6°) juepunpaJ se paddo.p gm_v
9NULIUOD YIYM SYORUJ 110 40 uoLjdedy nﬁhom syoeay 110 40 uopdesy © "o

S1de10

110MdNn

402040

asuo (,40090,) uolielasdod
393fqo 03 pajjuqns si 323{qo
3soybuou “juepunpasuou ydel

A-16




(€10 @3@3S 03 uOL}Lsued]
340343y} pue) UOLJRULWILUISLP 3ALJIR UIJUS

YOLyM (SAY pue SA0I3p) sydoeu3 210 40 UOLIdRLS

(Q0d saleAr3oe auojauayl pue) 210
S 2NULIU0D YO LyM SRIBUF 210 40 uOLIDR4y

S1dEL0

NOILNTO0A3 210

($80°)
.Qov,
AMMM%V sjuawbeusy se paddoup
: 6y S}oRJ} 210 40 uOLde4y

*(400d. 4q)

uofjeujuiadsip 32afqo
anpssed 03 pajodafqns os(e

S} u4njad ydes ‘a3els siy3 ujg

(91L0°)
£

A

QYERAS

szl o




NOILNT0A3 €10

s323fqo []|e

Sd1j1sseyd A1 nyss3dons
UOLIRULWLJDISLP 2ALIDR
eyl pawnsse st 3] 930N

(910°)
(¥10 93035 03 uoL}Lsuea] 340j343Yy] pue) spy AY
Se P3aLJLSSBLD S4B YOLYM sydead £10 30 uorideay A
(t86°) skodap se paddoup Amwo.v
€10 S® aNULIUOD YdLym SHORAJ £10 40 uoLjovuy "mhom s)¥oedl €10 40 uoLideuay Vo

A-18

S1dv10

€101714




NOILAT0A3 #10

pabebua jou S} 34l $10
asnedaq pajeuiwud) buyssadoad uanias  y10 40 uotloeds

pa1dasuazu) a4e YdLym sydes3 10

U4y - 1) (% - 1) = (600%)

'R

40 uoijoeay aul m*pcv» 343YM by Aekcm - 1) = (800°)

(610 @3e3s 03 uoLlLsuedy 40334943 pue) a03dadiajul ue jo
youney 3yl Yiim pajeLdosse S3oB43 pLO 4O UOLIORAY

(Kemadpun {(13s fuiyoedy 303fqo youneaad)
aNULIUCD YIYmM SYORUI Y10 O UOLIORAS

J1L

(€86°)
n¢kom

— S1db10 104 ~

¥101714

B et

- pL0MdN

- et ————

QYA



NOILNIO0AT S10

(00°)
(9319 dwod 1d9o4alul) dols yotym sydedl §10 JO uoidedy : W3y

. (Kemaspun L1t3s 3 966°)
3d99423uUL) 3NULIUOD YOLYM SYIBAT G1Q JO UOLIORA "mhou

$10114 - G10Mdn

A-20




NOILNI0A3 d0d

UOLJRULWLADSIP 3ALIOR 03 PAIIiugns S32a(Q0 340 uoL}oRd

UOLJBULWILADSLP 3ALIDR 03 PaJILUYNS 39 130U
pue patjisseLoun fuiutewas $323[q0 jo uoijoedy

1204 _

quswbeay © se patslsse|d s323fqo 4o uoildedd

NN

UOLINLOAD ZLO 33BIS UILM
PajeULPA00D S} UOLINLOAD Q0d

(y80°)
.0V

(006°)
.1ONN

(910°)
RICEN

A-2]

VERAC

c - T

\ - ———— o - S




NOILNT0AI Qv

UOJRULWLADSLP dAL3JR Buileuiuwudl pue (8£0°)
futuue(d 3dadoaajup Butjeliiul 3404343Yy3 “SAY Se patjisseld ,who
uoLjeuLwLadsLp aat3de burobuspun s303(q0 jo uotideay Ix

(2L1°)
$A029p Se paLiLsSSe|d aue YdLym .A0230,

uoLjeULLIISLP dAL3OR Burobudpun s399[q0 JO uopjoeRAY

(0sL*)
. 00Y,

UOLRULWLUISLP
aAL30e Bulobaapun anuLIuod ystym s3d3fq0 40 uoLoRLy

A

(o)




NOILNI0A3 9W

(€00°)
pajaldwod $3daduaquy o uoppoedy :dWI

(£66°)
BuLnuljuod $403dad4sa3uL jO uoLIdeRAY "wzm

As23

QP YERRS




Radar Scheduling Model

Radar scheduling is grossly decomposed into MACROSCHEDULER and a
MICROSCHEDULER. Wnile tne several radar pulse types are handled in a
single data structure (in the present implementation), it is necessary
to explicitly distinguisn each type in the functional model.

initial S/v

pulse request S/V S/V pulse order
Tl M M *
A I
first TI : ¢
pulse request 0 TI 0 TI pulse order
N S
C c
subsequent TI 2 g
pulse requests N .
- . D
U . U
* L L
° E E
. - R
MG pulse MG MG pulse order

requests .
places pulses places candidate

into group as pulses on the

candidates for radar time line

a frame
The macroscheduler prepares each pulse type by processing specific to
each type, then creates groups of candidate pulses suitable for detailed
(micro-) scheduling within a frame. Generally, pulse requests include a
requested transmission time sometime after the time of receipt at the
macroscheduler. Thus, the macroscheduler model must incorporate a
representation of these time differences. Further, the macroscheduler
resolves the radar rate constraint, a further effect to be modeled.

The macroscheduling of each pulse type is modeled by three
PRIMITIVE functions:

bl



D D (=

radar pulse models models

parameter deferral to radar rate

computations nominal constraint
transmission

time and framing
delay

Only the first PRIMITIVE involves a processing load., The latter two
PRIMITIVES are used to model delays, as indicated above.

Deferral to Nominal Transmission Time

Pulses are given a nominal transmission time by the TASK which
determines that a new pulse is required. This time is such as to
achieve a fixed, interpulse interval in order to achieve sufficient
tracking accuracy., In this flow-oriented model, pulses do not have an
individual identity so that an effective delay to represent the deferral
to the nominal transmission time must be introduced. Initiafly, a delay
specific to each process state will be provided for. Appropriate values
for the delays will be arrived at by trial-and-error through use of PAES
program. ‘

(In checking out the process description, where no architecture
effects are present, the entire delay — except for the at integration
steps tnrough non-zero delay primitives —— can be located in tnis model
for deferral to nominal transmission time. The selected values would
then be taken to be the desired port-to-port response times less the
fixed delays incurred in other primitives on the relevant thread.)

Framing Delay

Tne use of a radar scnheduling frame was introduced in the existing
terminal defense data processing to achieve efficiency in (micro-)

VERAC

incorporated

. s i m s - mevs i . - - e i e r———— s~




scheduling and to meet TASK scheduling requirements in the CDC 7700
implementation. New scheduling concepts are probably appropriate for a
distributed data processing implementation. -

The use of a frame introduces a delay, as suggested in the

o —f—  —

frame
82,

) .
scheduling je—smacro | micro je—3t

yllustration below:

radar

schedule’schedule

pulse request

arrival time
The total time from pulse request arrival to the beginning of .the frame
L r into which the pulse is scheduled is given by

+ T + T +
51 macro micro = ¢2 \

as indicated in the illustration. The processing times Tmacro
and Tmicro 2@ explicitly modeled in distinct PRIMITIVES. The
delay 81 is represented in the operating system. Delay 85 is
incurred due to the discretization of tne radar time line into frames.
On average, this delay is f/2. Pulse requests are distributed over the ;‘
frame, of length f, so that, on the average (and not providing priority
to any particular pulse types) a further delay of f/2 is incurred. Tnus

the total framing delay is, on average, f,

3

f Combined Model for Deferral to Nominal Transmission Time and
E Framing Delay
|
i

The total delay associated with tnhe deferral to nominal

transmission time and the framing delay is taken to\be, simply,

g f .




e — ‘h

with ST to be adjusted, by examination of simulation results, to achieve
the effective desired interpulse times when this is possible (i.e.,

SyT > 0). A heavy scenario can lead to the choice GNT=0 and yet not
achieve desired port-to-port response times. In these cases, the
presence of the framing delay represents a realistic contribution to the

actual port-to-port response time.

Radar Rate Constraint Model

Tne macroscheduler accounts for tne radar rate constraint (R pps).
This is modeled by a coupling between the primitives RDCXX for the
various pulse types.

In a time increment at, Rat pulses can be nhandled. If
E input queue lengths for each pulse type < Rat
the constraint is not active and each primitive is a zero-delay
primitive. Otherwise, the total rate must be limited. While a priority
scheme might be used, we take here a proportional model. That is, we

take

Rat
input queue lengtns for each pulse type

and take as rates for the respective pulse types:

e x queue length{pulse type)/at

incosporated B2l

§ e gy n ey




————

radar returns

&

radar commands

& l RACAR I <
A4
Radar Returns Microscheduler
Assimilation A
candidate pulse
NAVAVAVA Search Raster | Search rasters pool
>~
Generation > Macroscheduler
MAAA A
S/v
returns
-~ S/V Returns first TI pulse
- Processing request
new TI
TI
returns \/
TI pul t
S, TI Tracking pulse reques
P
new 0T ;
13}
returns w/ i
> 0T Tracking 0T pulse request
0D request
\'4
AD
returns - Object AD pulse request
-~ Discrimination
Intercept request
Intercept Planning first G pulse request
MG .
returns \ Intercept plan
NG pulse request
> Intercept Control

PROCESS OVERVIEM
A-28

[ 3




1300H SNUNLIY ¥vawvy

L10avY
2100wy

£100avy
v10avy
6100wy

1avavy

A-29

C i o ———— e ———————— P+ * WA ST W | A A =Y




<A103S1Y SuAN}dL A/S 3yl St $Sadoud
3yl burAtap 3ndut tedidutad 3ayy

(suan3ads A/S

1|I|J — =

ﬁwaa 0L 93e4 uogtun
Y3 M Lapou 213K eue
asn ‘bui3say ;JMH

91l woay e3ep
ndug 0L4RUIIS

suaniaa p/S

sas|nd

30 B6uLyoayd A31piLeA)
ASQTA OL

/
N
N

uan3as /s

LYAS

Keijap 043z

{apow suaniasa A/S Indul

LYASNI  :@ALILWLAG




(1eda1dA3) ‘pasn st
topow Indup suanias A/S
31 3nd3no waysAs 03 40

uan3as A/S

(Suanjad pA/S 30 —&—
BuLydayd A3ipLieA)
ASQTA oL

13UAS

(Aelap 043Z y3LM) |3pow 334n0SaL 3inejap asn

awly} |aAed) diuay punos ajed
ananb QYOAS ul #

:|opow duj|adid e si |apow Jepey

s49p40 3sind
aeped A/S

Lopow :g:umh// <
™~

depe. A/S \\\

(sasanbaa A/S

QYOAS 40 Bul|npaydsoudiu)
ASDIH wouay

(sLlRWS, S} BWE3 |3ARA} dia3 punod J1) Aeyap o4dz aq Aey
L9pow Jepey

LOpOW uan3ad Jeped A/S

ASOVY  3Al3Lutdd

L aa

e B

i




(suanjaa 11 30
Butyoays A3LpLLeA)

suanjaq 11

lAll

1107A OL

IHIL

(Aelap 0u4dz y3LM) [apow 3DuNOSaL J|Nesap 3sn

s opoul :;:umgf//

awly [dAed3 dial punod

anarb QYOIL ut #

aled

: |opow dujladid e Si [3Ipow uaNIdY

S49pJ40 mmpza

aepes 11

aeped 11/

(nLlews, Sull |dARL} dia3 punoa ji) Ae|3p 043Z 3q ey

ayoIlL

s
~

(sasanbaus 11
30 Bul|npayasoudtu)

112114 wo43

|9pOW UAN}dA Jeped 11

[10Vd  :9ALILULL

A-32

g




Ae|3p 043Z y3iM) [APOW 3JUNOSILA 3| NeIIP 3sn

awLy |aAeal did3 punod

19jed
ananb Qyox10 ut #

: | 9pOoid , #

sasp4o as|nd @ ﬂ

uan3aa x10 4eped Xx10 e |

Lepoiu c;:umL/// _ (sasenbas x10
(suanzaa x10 30 ||Am|L 1epRA X10 < 30 mzmpsmm:wwogu_sv
BuLyosyd A3LpLieA) 10011} woay
X1007A OL 139X10 ayoxi0 .

(slilwes, si awi3 |3Ae43 dpd3 punod i) Ke|ap oudz 3q Aey
Lapou aepey

L3pOW u4N3aL Jeped x10

(S%p°€°2*L = X) XJOOWY :dALILMLAG




(suanzaa gy jo
Buiyosud A3iptieA)
QvaiA o)

suaniad  qy

e
o~

133ay

\

(saouanbas asind gy 2dA3 (10, SL3POW) sw 0SI Kejap

awi) [dAedl didg punoa
ananb @yoay ut #

= 3}jed

: L3poy

saapJdo as|nd
depea Qv

Lapou :;:um;/// (s3senbaa gy

momcm—zvmcumoLUwEv
gmum;a<\ Eo;
quoaY AvIINW 3

N

(.Ltews, SL BwLy |aAeay diul punoa ji) Aejap 043z 3q Aey
Lapow Jepey

lepow uan}as Jeped  Qy

QVOYY :9Al3tutdd

.




(Ae|8p 0432 y3LM) [3poOw 3J24N0S3aL }|nNejap asn

BulLl] |dAe4] dLA] punou

= 9jed
ananb QYO9W u} #
- Lopot
S43pa0 asind

Jaeped gy
iy Lapow :;:um;/// (s3sanbas gy Jo
(sudn3ad g Jo g & m__._:_m“___w_%.a_s

Buiyoays A3LpiLLea) Jeped o/ 9 3
9WaIA oL 13490 Q409K

(nilews, si awi3 [3aAeay dia3 punoua i) Aejap ousz 3q Aey
Lapow Jepty

[9pow uanjad Jeped 9y

oWaVY  :8Al3lwtdg

A-35




ASQTA

1107A

ROILONNI NOILYINWISSY SHUNL3IY YvOWd

fL007A

G1001A

avaiA

A-36

OHATA

NS S




(Bupssadoud suanjad uor3dd33p)

dddyao?
SUAN}3L
A/S pLLeA
—
paydayod jutod paxiy
aNAS uin3a4 A/s
[T 0GL
— suanlad A/S jo
SuaN}sd K3 LpLLRA 3OBYd
A/S Peq AHOAS
IluAl
QvaAas

*3nd3no wajysAs

e se udye} Si Syl “GVIAS 40 Buypssadouad
[opow 20U Op @A Sy °PL|BA 8Q 03 sSuanjaa j|e
a%e3 an juasdad 3y "bulnpaydsau 404 oeq
JUdS pue patLIuspl 9q Aew suanjaua peg

.SUINJDL A0S, 404 J|nesap Ae|ap ou4sz 3asf)

‘pa340S d4e pue 43u3ab0} dALJ4e S3AA} SUANIBUA SNOLJIBA Y[y

m:;:um;///

*butdnod |euoi3ouny e buifdwy

suanjad A/S o

~ _(lopow suaniad

*IA0S \\\

A-37

o~ Jepea A/S)
YASHI 40 ASQYY wody

13YAS

St e v p—

——— e pg— .-
S

UOL3OUN} UOLIB|LWLSSR SUANIDA Jepey

suan3ad A/S 30 BuiI3Yd A3|pilep

ASQTA  :3AL3tuilad




(burssasoad suaniaa 11)
dyIl 03

SUAN3}au
1L PLLeA

——

aTAIL

SuUANIOL
I1 ptieaut

u:nu=o+

waysAs

Gvell

e e+ —————————— .

juiod paxiy

mcmmwwm:wp suanjad I}
ITH 056 mc;:pob// _ (19pou suanjaua
] SUANJOA J1 4O < Jaeped 11)
340S ; WOU S
A3LPLLEA 323Yd 301 11Qvy
AHOIL

U0139Uny UOLJB|LWLSSE SUANIdL Jepey

sudnjas 11 40 B6ulydodud A3LpLLeA

107 (eALILWLA

RN




3ndino
waysAs

(Su4nias G10 yoedun) GLONdN 03 €—— QIAVLO
(suanjaa p10 %oedun) projdn 03<—@1APLO

(suaniou 333fqo 404 %934 A023p) MNHIAIQ 03 <—qelL0
(suanzaa 30300 .04 %294d Judlibeds) WHITE4 03 <—0TAZLO
(Su4n3as 393(q0 40y %294d AOuepUNpad) FHIYLO 03— QTALLO

uaniaa xjy0
pLiea

ouulAm.

GIAX10

suanjad xJ0
PiLBAUL

oullAml

avexi0

suan)ad
X10 jupod paxiy
pa¥yoayd
17 009
r|4 suanyad xj0 0
A3tpriea 329ud
AHIX10

suanjad ///’

suaniaa xj10

3408 \

134x10

(6 g2t = x) x1001A

R Y T

&— (13pou suanjau

Jeped x(0)
X100VH woJay

UOLOUNS UO}JR|LUIESSR SUANIDA Aepey

suanjaa x10 J0 Bupyoayd A3ipriep

TOALT LWLAg

R et 2




SUANOU
(uoijeu
MTREIIT Qv pLiea
320(qgo
aA1390)03 €]
aovy
; aiaQy
~ suaniad QY
pPiLRAUL
andano
wa3sAs SnAl
avsay

suanjad Qv
paYoaLd

jutod paxij

AHIAY

174 009

sudnlas Qy 40
A3LPLLRA Y23UD

suanjad ,//

suanjod  qy

340 \\\1

1340y

< {3pow suanjau
<! Jdeped  Qy)

Qvayy Wwo.y

UoE3ouUNy LOLIL|LWESSE SUANISL Jepey

sudniad gy o0 Bupyoaud A3iptiep

(2°L = x)

GVaTA  3ALLwtdg




jurod paxiy

uanyad gy
pPileA
(uanjad
g o uAn3ad
yoedun) oW
91¢AdN QAW paj29Yyd
u4niad oy
pileAul AHIOW
andano . ——0l|
way}sAs 03
QVa9KW

IW 009
Suanjad o] 40
A11pLLeA %23Ud

SULNI3dA
3408

\
/

uaniaua 9i§
i (1apot uaniau
Jeped 9it)
IHAVY: wody

1349

U0$33Uny UOLIR|LWLSSR SUANIAA Jepey

suanjas 9 J0 Buind3Yd AILpHieA

oWaIA  F3ALI ML

o )..‘ I .
A i L e e

A-4)




NOILINN4 NOILVYINID ¥ILSWY HIYV3S




*S3U0 M3U
pue pajeaduab A|LeoLpotuad asoyl
309 ¢SPUBUMIOD 43ISB4 YO4e3S JO

Jcanu {303 9Y3 S|9pow dAL3jwiid sddg jO 3jed ulOjjun
siy] °PpajoLdp Souo pLO pue pappe :lapow d3f|eue
L] {eUOLSEII0 3UB SUD]SBU YOUB3S anduy OL4eUIIS

Mau ‘uoilippe up -ananb uy padeld
A1 1e21pOLAad B4R SUBISEU YO4R3S

SPUBLAIOD J43ISBU
yodeas

SPURURIOD
(uotjeasuab asind A/S) —< _ uoirjeasudd A/S
N3I9AS 03

awoys

Ke|ap 043z
anduj
SpURURLOD J3ISPL YOURIS

GWONS  :3ALLUILAd

A-43

. ————— S TSRS vy

-




(sisanbaua p/S

9yl u

*Passad0ad 0S|e 3ue SUI}SeU
M3U J40J SpUBUIOD ‘UOL3LPPR U] -spead
aALIONUYSIp AQ PaLIAd due SU3ISEU dALOP
Y3l 0S *pouaols A[|e20] 3q ued Su3lsed
3A1300 ||P j0u ‘uoljerudwaidul Burysyixa

*(SXa 3LL4) salqe3 ul pasols

pue pajndwodsuad aue SUDISeL YoULaS

(v)ooT :A{leutuou

J3jsea e ut

s1sanbaa  S3SLNd A/S

asind A

/s 0 4aqunu

uo juLealsuod
ajed Jaeped)
ASIGY 03

<
N

03YAS

(sxa @tt4)
S493SBU |oardS
paJ031s pead

(¥) spaom ¢ x 001

jurod paxL}

SpueULIOD
(€) 17w o008 431504 Yd4eas
salqel (Spueuwod
uojeuauab —< 493SP4 YdURaS)
astnd p/S auoys
p3403s ssa3204d awoys wo. 4

uotjedsauab 3sanbas as|nd p/S

N3IOAS  :9Alliuldd

.

L




*(burssadoud
juanbasqns aAy4p jou sa0p) IndIno wAISAS e
S1 N39AS 3AL3puitad Jo 3ndino ayj ‘pasn usym

*s3sanbaa asind p/S JO 3384 Y3 4IA0
1043U0D 32341p SapiAoad aApItupad Indup spyi

(sasanbaa p/S uo
JULRASUOD 334 Jdepea)
ASO(QY 03

s

(s) sdd 0C02-55 abuea ay3y

s3sanbau
asind A/S

o ——

DIYAS

uf 3jed udogjun
1apow 213K eue
3nduy ogJheudds

s1sanbaa
asind p/s

Aejap-043z
3nduy

uojjeaauab 3sanbaa asind p/S

DYASNI  :3AL3puiad

A-45




i L]
t.1024d
|

avoud 2100yd
)
1 ] \
||
9WIYd 61074d £107Ud 110034
-
1 ‘ i
NOT1OKN4 i
| i 1 -
\x 9HIINGIHISOUIWH
(  0v4l0 $10410 210410 11410 . ‘
) ] ] < o 1
1 \ \ ﬂ
ondtg ) | BOW €10410 110410
| )
A 4 ‘
avI0Y 109GY m:Asa 11704 ]
[ ]
] | | [ 1 | ;
MDY 51003 €10204 110704 :




*[9pow JULRUISUOD U
Jeped ay3 ybnoayl paidnod aue s3sanbad as|nd snojuaeA 3ujx

(9A139® 30U JULRAJSUOD UIYM) Kerap oaaz 3aq Aey
uo3ouny bupLnpayds Jepey

s1sanbaa A/S uO Ju}RUISUOD 31ed Jepey

ASIQY  iRARILuLad

sasind A/S
pa(npayss oudeu s353nbau
~ b
(sasanbaa A/S 40 /// as|nd A/S 6 < -
JULeU SU0D P (uogjeadud ] )
Bu Lnpayd S04 L) muw& Jeped \ o~ 1sanbaa asynd A/S) < ﬁ
ASDIW OL v . ; 03UAS YASNI 40 NIDAS WOy




(s3senbau 1)

404 Ae|op Burweay
pue JuwL} uoissuw
=SueJdl} paudayap)

[1410 o1

*sa9jauieaed aepes 3onpouad 03 passadoad
9Je sisanbaua i ‘uopjewuojui 3jels I
pue ssuiL} uopssiwsuedyl |eutwou bulsn

ZOIYILH + TOIYILK = DIYILH

(saduanbas 1| butobuo

o~ 40 buLssadoud)
s3sanbau 9NO9IL wouy
IL passasoud jutod buyzeoty ZOIYIL
. (9°S) .
< Z IW 0GYL y
~ . ™~ ™~
s3sanbad [}
o Buissadou
4dIL b d 03IL
(6upssasoad suaniad
An — uo132339p)
ddq wouy
1b3IL

uoLjouny Bul|npayds Jepey

s3sanbaa 1] }Jo Bupssadoug

1104d :3Al3tuitdad

A-48




3Ly} uoLssiw

JzLs aweay -SuRJ4j} |RULWOU
. 3yl SL J d4dym aAaLyoe 03
Leob au3 ‘fe|ap burweay aWly |eadasap
pa3dxa Aew awy) asuodsad dld (enjoe
3yl 319£ ‘oudz aq Aew ~h@ ¢joe33e s T _F@ = Aefap (e303 1
AAeay ul -awi} asuodsad ¢4 Leujwou Aelop 1e303 ses
aAayoe 03 pasodwi Ae|ap [euopjippe ananb ydIl ut # ~ 3 N

3yl se pauiwaalap aq [LiM Hh@

Wt = 4 :aupjadpd © Aq pajapow s} Kelag
0= o ayea .
e

' A
<
s3sanbaa ) s3sanbau i -
. paJJajap passasoud W
(sasanbaa 1§ uo < Lapou Ae|op mcvsm;m///l, P sysanbaa [1 w
JULBAISUOD BlBd Jeped) pue uotLssSiwsued} pad < moﬂmc*mmwuonnv ”
-J4348p 3sanbaua 1] 11244 W0} w
11244 oL 43011 NdIL ”

P

uoj3ouny bHup|npayos Jepey

sysanbas 1| 404 Aejap bupwedy pue 3wi3 UOLSSLWSURL] PIAL3S3(Q

11410 :8Al3Lutad . h




(s3ysanbaua 11 joO
bul | Npayd s0u3 Lw)

IIW oL

panpaydsoaoeu

o

sasihd 11

*|opow JULBAISUOD 33BJ Jeped Y3
ybnoayy pajdnod ase s3sanbaus asind SNOLJARA ]y

sjsanbau
1L p34uasop

pcwm;pmcoU/// P

™~

HOSIL

9184 ueped <

* J3q1L  (S3senbax 1) 403 Aegap Bupueay
pue awlj UOLSSLWSURJ] PAL4343p)
11410 wou4y

(aA130@ J0U JULRUISUOD uaym) Ae|ap 043z 3q Aey
uoijouny bui|npayds Lepey

$759nbaJ J1 UO JULBUAISUOD )B4 Jepey

11904  :aALlluLyeg

A-50




(s3senbaa 110

404 Aeyap buiwedy
pue awi} uoLsSiw
-Suedy} paaud4ap)

110410 Ol

s3sonbad 110
passadsouad

juiod buijeol

&
™~

N4TLO0

(9°s) 17w 0SSl

s3sanbad 110
40 Buyrssadoud

j1sanbad
asind 110
(3sanbau
— as{nd 110 d+edaud)
S$1d4110 wous
2bytlo
s3sanbau
astnd 110
bIYTLO 1sanbad
asind 110
(uopeziierLut
Iy L0 pue
3sonbaa A6aaud)
DIYYNT wouy
104110

uotjouny bul|npaydss aepey

3sanbada asind L10 SS8204d

19AL3 HUAd

11024d

A




sasanbaa x10

jutod burieoyly

s3sanbau %0 passadoud
404 Aelap buiueay
pue awL3 worssiw -
-sueay paJudaiap) o~
X1041G ol UIX10

(9°S) 174 0SSt

s315anbad X0 SS9%04d

*Aelap ou3z 3qQ Aew pyiQJUd :SION

1sanbau
as|nd x1Q
An (3ssnbou
as|nd x1Q aaedaud)
X10 wWou
DIUX10 S1d x10 3

uo}3douny Buynpsuds aepey

31sonbaa as(nd X1 $S32044

(Gp*€°2 = X) X102¥d :3ALILWLAd

A-52




Swo L

X105  aye3

s3sanbau X10

9z|s auweuy ma*u uoLssjusueay |
U3 SL J d4dym Leujwou dAd}Yde 03 -
‘Ae|ap bujpweay 3w}l po443ajap
s + 109 . feyop (e303

_Aeyap (0303
INdND Y4 X10 Ul #

s 9jed

:auiladid e Aq patapow s§ Aeyaq

s3sanbaa x10 “ :

paauasap _
(s3sanbaa x)0 - \\\ Lopouw /// passado.d &
U0 JULRAJSUOD P Aelap Buiuweay pue < (s3sanbaa x10 < -
ajed uepeu) ~ ,// cowmm_smcnga pau ~ 40 Buyssasoud)
-4343p 3sonbau x| ] wWodl.
X100G¥ O1 430%10 44X 10 X100Ud W0}

uoj3douny Buj|npayss sepey

s3sanbaa x)0 404 Ae|ap Hupwedj pue dSwiy UOLSSiwSueA] PSAUd4AQ

(S*p*E*2°L = X) X1C4IG :aALIIwidd




R el S T e i N et B S HEE el e B S A .St AR B T Y 41L1411ﬂ“

*|9pow 2ULRAISUOD d3e4 Jeped 3y ybnoayl
pajdnod due sj3sanbaa asind snojdeA ayle

‘ sasnd x10 s3sanbaa x10
ﬁ panpayasoadeu paJud}ap

(sisenboa x10 404 Ae|3p
Bujweay pue L}
UOLSSLuSURAT P3JUdJSF)
X1041C wody

X100IK OL HISX10 * 430%10 i

A-5¢

Bui|npaydsouadti) djes aeped

(s3sanbaa xjg j0 s _ A“H JULRAFSUOD HVV <

. (eA1390 30U JULRAISUOD UBUM) Ae|3p 043Z 3q ey
uoi3ouny HuL|npauds Jaepey

s359nbad XJ( UO JULBAISUOD 31ed JepeRY

(S°pc€2°L = X) XI0OGY :aAlRtuidd

.




(sasanbaa Qv 403
Ke|ap buiueay
pue uoisstu
-SUBA] PBU4ISIP)

av4lG ol

sysonbsa QY
passadoad

juiod buileoiy

N

Jdday

(9°s) I 00tl

s3sanbaa QY $S82044

3sanbaa
asitnd Qv
T (s3sonbau -
< as|ind @y d4edoud) -
| S1dav wo4j
bayav

uogjouny bugnpayds sepey

1sonbaa asind QY $S3304d

vy ‘ORI




Suwpp =

0 =

3sonboua gy

3

xc«o

3 +

XWy = feysp e30

Aejap [e103

SNonb J¥dxay Ul #

9jed

L3pOk

sisanbaua gy

pa4Jajap (opou passadoud
(sisenbas gy uo , \\\ fe|ap Butiwedy vcw//r P (s3senbaa gy
1ULeJd3sSuod 3jes Jeped) < UOLSSLuSURI} PAUUGY < 40 bugssaooud)
YR | -3p 1sanbau gy \\\ J4day wouy
aviaqy oL 130Qy 240y

uot3duny bul | npauos Jepey

sisanbas xQy 404 Aeiap buiwesy pue 3UL3 UOLSSLWSURAY P3UUDSIG

QY41C :3AL3iwlyg

]

4
i
:




(s3senbaa Qv 3O
Buy | ApaYOSOAd L)

avoIl

sas|nd qy
pajnpaiosoaoell

—&——

M |

HJsSay

L

JULRASUOD
ajed aeped

*|3pow JuieAISUOD 3jed Jeped Y3
ubnoayz paLdnod aae sisanboa asind snoguea 3yl

s3sanbad qy

Pa.Ja49p (sasenbaa qay

40} Aeyap Bupweay
pue 3ui] uoLSSLw
-Sued} pasad}ap)

aviig woay

<
/

430Qv

(9A1392 J0U JujeaISUOD usayn) Ae|ap ouaaz aq Aey
uot3ouny Bujnpayds aepey

s}sanbad (Y UO JuLeAISUOD djed Jepey

GvIay :eAljiutdd

A-57

il




(sisanba. 4 404
Ae|sp buiwea} pw - w3

s3ssnbaa 9y
vmmmowo;q

jurod buirjeol}

UOLSS |WSURAY PAAIDSBP)
9H4lQ Ol

P
™~

J4doil

(9°s) 1MW OStL

s3sanbaa 5] $582044

3sanbau
as|nd gu
juanbasqns
s3sanbau — m.nmumosco; asind oy :
astnd 9yl aedaud) S9N WO4y k
P 209N 8
~ -1sanbaua as|nd <
b3You o 3std (6utssadoud
ﬁ. < asuodsaa younel

Leuty) dy14 wody

10349W

Ae|ap 043z aq Aey
uoryouny bGupnpayds Jepey

1sanbad as|nd 9 $SIN0UG

9l0Ud  :SALI LWL




j

3 + wzw = AKAe[ap eiol

Aejap (e303 H
3nsnb ugon 0L F - o1

19pOH
A
— » b
s3sanbaa 9y s3sanbaa o “ ,
_ bujueay pue swid (s3isonbau oy N -
uped meww”cwu mw uwv < uO}SSLUSURAF P34 40 bujssadoud) M . i
jutedy } P /L&mv 3s3nbas 9y . 24doy Woay
9Wlay oL 4309 JYdIM

uoyjouny 6Gug|npayds Jepey s

s3sanbaa 9y 404 Ae|ap Bujweay pue Wi} uopssiusuedy paJauiaiag

9WjLQ PALIHULA




:

sysanbad 9l 30
Ut NPaYI SoUd Lur)

YWIIW Ol

sasind 9y
pa|npaydsoadeu

<
™~

HISOKW

/
\

»*

JULRAISUOD
2704 JEpea

*19pOW JU{RJISUOD 3je. Jeped 3yl ybnoayl
pa1dnod ase s3sanbau as|nd snoLJBA YLy

s35anbaa
OW Pa41333p (s3sanbaa gy 404 Aelap
B . bulweay pue awLy

\\\ ~SUOLSSwsuRA} PaUUasap)

9310 Wo43

4309W

(2A1300 30U Juledlsuod uaym) Ae|ap o043z 3aq Aey
uol3duny bui|npayds Jepey

$3sanbaa gy UO JULBUISUOD 3jed Jepey

oWy  :3ALILWLAd

A-60

shatitibinke




NOILINNd ONITNAIHISOUIIW

A-61

avoIW p1001KW 21001 T1JIW

€1001INW T1001IKW ASOIW

OWOIW G10JIW




(Lopow uanlau
Jeped A/S)
ASOYY  ©O)

s4apuo asynd
Jeped A/S

qurod paxiy

P
~N

QYOAS

(9) 17 0092

sasind
A/S 3LNP3YISOLI LW

sas(nd A/S
PaLNpayd soadew (s150nbad A/S
U0 JULBAISUOD
< ajeu aepea)
ASIQY wouy
HJISAS

uoLiouny BuL[npayos aepey

s3sanbaud A/S 40 Bul|npaydsousdiy

ASJIW :3ALILULJd




jutod paxiy

sasind 11 b
sa9p40 as|nd
ainpaydssoasdeu '
Jdeped 11 (9) IW 05kl PaLhped (s3isenbaa 1}f P m
(13pOW u4nN3du z sas|nd < :oow“wm“ww“mw “m
aeped 1) S IL @LNP3YISOUI L 11004 wouy _
Ii0vy OL Q¥o1L HISIL

uotjouny BuLinpayds aepey

s3sanbaa 11 40 BuL|npayssoad Ly

ILOIN :aALltwiag M

{
i
]
i




qutod paxiy

S4d3p40o asind sasind x]0
’ aeped x]10 (9) 17 065l pajnpaydsoadeu (s3sanbaa x10
. ‘ uo JUieaISuU0d
(13pow uan3aa Jeped x10) sas(nd x10 —& 3jea Jeped)
X100vy Ol 9| NP3aYISOUD LW X1020Y wo43
Qyox10 HISX10

uot3ouny bup|npayds Jepey

ot .

A-64

sysanbad x10 40 BuLLNPaYISOLIN

(SEp°E2T = X) XI0DIW :3ALILwidd

iz - ot it e e e b



(13pow uaniau

S43p4o as|nd
Jeped  qQy

juLod paxiy

Jeped  qy)
avavd Ol

ayoay

(9) ITW 00€L

sas(nd Qy
81NPayISOud L

sas|nd qQy
pajnpaydsoadew (s3sanbaa  Qy -
uo JuULeAFSUOD ©
AM 3jea aeped) L4
ayoay wouy
HISAav

uotyouny buLnpayds Jepey

s3sanbaa QY JO BULINPaYISOUI LY

QVIIW  feAlltwLag




s4ap4o 3asynd

jurod paxiy

Jeped gy
( Lspow Z
UAN3aLA Jeped o) ~
: OWOVY 0L QHO9N

(9) I7W OSLL

sasind 9y
1NPaYI SO LYW

sasind oy
pajnpaydsoadel

&

™~

HISOW

(s3sanbaa 9W
uo Juiea3suod
ajed aeped)
IWI0Y WOy

uoi3ouny bugnpayds aepey

s3sonbad gy J0 Bul|nNpaYdSOAILW

IWIIW :aALLuitsd

A-66

i

-~




NOILONNF 9NISSII0Ud SNYNLIY¥ NOILI3L3Q

oy

A-67

e e dddya ]




| juiod Bupjeoyy

_ uinjas A/s e
| passadsoadaad 14 1442 SUANId4 A/S PLLEA ! A
! (6urssadoud . (suan3as A/S

dnoab a|bue) < fulyrew L &— 40 6urydayd ,
: d¥9ONyY 0L -40434 pue 3jep f3pLiea) @ L
_ dAS -dn ejep J4333Nn1) QNS ASQIA wo4j A. :

uopjduny HuLSSAI0Ad SUUNIBUA UOLII3I3Q

6uLssad0adaad suanias uo13dalag

ddd¥@ :oALjLuLAd




I7W OLLL sa}ldu]

v saajaweded [euLwop

uanjljoed
jutod buijeory vwmmowogawmm
suanjads A/S o Xdoo
sdnoab ] passadoud 54 3
A<QO m_._.wv [W “NONIT + A@C.ﬁmmmucknmkn
(uor3ezipeiatut < , salL} dnoub mUz oot + ozemm -<— SuJn3aJs uo132333p)
11) a|bue 93 14M Buydnoub a|buy ddd¥a wo.y
| LINIL 0L g yugyy ASJYd dAS
dnouab |

{eatdfy ¢dnoub aibue
J43d spJom €9

- u0j3ouny Bussadouad suanlasa uoi3IBYaQ

bupssadoud dnoub a|buy

dYINY  3ALItuLAd

PO S




17N 0002 S3}idu]
e/t-¢ iy

L 9N
sddjauwednd [euLwoN

u4nias pA/S
(uoyr3e3nduod s3abuaey 1) jutod Gutjeo(s passadoudaad
J4933weaed asind
1L teranr) < ejep 3364ey 1w IN/AN mwma aywuwmwwm”“%
1571dl1 ol IL 33L4M :
-ezijeiqtul I1 dYINY woly
1INIL Sd¥9ll

uan3aa pA/s sad
s3abaeq 01 eo1dA2
¢30b4ae} 42d spaom 92

uor3ouny buissadoud suaniad uo1IdI3Q

uopjezijerjiul 11

LINIL :3AR3tutag

A-70




sleats. 'L:-.—_.u..-.; [ N S,

3sanbaua as|nd dnoub jutod Bupjeoqy -
1L (eLaLuL sjabae3 11 w
s1sanbaud o P IIW 00€ P (uorjezipetyut - .
(=3 mc_mmwwownv o Buyssadoud < 1L) T -
" 11744 o1 493aweaed asing LINIL wouj <
103411 - LINIL

uot3duny Bupssadouad Sudniad uoL3dalaQ

uoryeindwod udjaweded 3sind i [eiItu]

[STdIL  :3Aljtuiiad




TR ™ T TRt g

NOILONNS SNISS300¥d SN¥NI3Y NOILIILA

|

DIYYN3

INOEIL

a3qdll

A

A-72




~sdnoub ajbue [) $0 uOLINLO0Ad

: ) apow sJdjaweued 3L[ds
: 3 19poul S4%3 L W 000y Satidu]
1
?5uanbas-}0-pua (2=1t) g'z:iN
< (110 opw: (2=-9) € :Oy
ejep [L 93L4M
WWmmwwowm ssojoueaed {eoULWON
S0341L o1 46
jutod butieoly
' suan3ad I (vl mppwwmv suan3ad
11 Buiobuo passadoad dnoub 93 tum 1.0 a I 1L PiLEA (suan3as 11
{1 BuioBuo 30 ) N umw + TNESY 30 Bupypaud
futssadoad < £es Sp4AOM €9 + “NSSL + 88( < A31pLLeA)
Leuty) Suan3aJ 1LQ7A WO44
(110 3LL4)
ejep 11 pedy
spaom Ly v.
11 pesp p NY92
(1L pedp 30 & . , (vda @143)
buyssasoad | 800 ejep dnoub pesy
Leuts) av3all
g30814 04
SPAOM £9

uoyjouny 6uLssadcud suanisa Ii

fuyssad0ud suaniad 11

dill i3ARIpuLad

NP

A-73

A




et s Bas - e vt dad b lote o il

R

andino wasAs

spaom Ly 92
(110 aLty)
ejep 1

3ndino ajeLoosse

11 peap P wawpoo quiod buijeols 11 peap

| 11 peap 4o buy < suanlads’ 11
o) -$53004( pm:_m_ dyI1 wouay

lngarL e

(vda a1L4)
dnoub a|bue

a13(ag

SpJIOM £9

uo13ouny B6ulssadouad suaniaa 1

1L peap jo BuLssasoud [eutq

Q30911 :3Al3tuwlad

A-74

e,




e e e g mim e

S |
I W €5pG satidul
(g=—-01) 9 :I
eep 1L SN Jajoweaed {euiwoN
. SPAOM Ly 9z
] T~ .
qurod Hug3eo |
1sanbau ejep dnoub L \
asynd 11 a|bue a3tum & 1L Burob-uo :
(s3sanbau I1 40 Sp4OM €9 1 (buissadsoad . . ]
Butssa204d) < NZLL + 128 < swmal 11) o 1
1124d oL 1L Burobuo jo dyIL wouy <
20IL (110 3L14) furssadoud {eutd 9NOI L
ejep [ peay
spaom 1N 92
(vda aLLd)
ejep dnoub
a|bue peay
SpPAOM £9
uot3ouny bupssadoud suanjad Il

1L BuLobuo 30 Bupssadcad Leutd

gNOEIL :9ALIlwLUd




(Kouepunpas 404 (uogzezileiitul ‘
uoLje|aua40d 10/11) ¥yoea3 329(qo) -
1011 OL L1INILO Of

17W 0012 sdtidu]
moz 4 i

(s1oafqo #) 2 :

3209(qo
ajepipued jo Adod (s31sbaey #) € Ay M

ejep sadjaweaed [oULWON -
< 11 @3813Q
jutod bupieo|
wlﬂf— -~ »
530qo0 s3039(qo0 ejep dnoub . mozuwu + 11
ajepfpued 40 Adod Leicy 3|bue 333130 Lyogs + 99¢ | @duanbas-jo-pua
< 2 & mmwwwwwmw < (burssadoad  °
(110 3143) #o3yd Burpniut e ]
110 101 e3ep 1L 503 40 but s0311 dy1L wed w :
1L peay -ssadoud |eutLd
spaom Lygz
(vda ow_%vm
<& ejep dnoa
aybue peay
_ 11S¥) SpAOM £9
uot3ouny butssadoud suaniad Ji
[1 @2uanbas-j0-pua 30 furssaooud (euty
ndino wajsk
ndin ASAS S038IL  :3AllLuLdd

¢a1j4e43 BuLssoud




N -

jutod buijeols

153nbsd
ABadua 110
(uotrezyierdtut afty 10 —<
pue 3sanbau AbBusua)
bIwuNd oL D¥3110

ITW 00LT
uoL323|as
J9)8uedsed as|nd
JABpRJA pUR uOL}RZL

-(et3tut joeay 323fqQ

309[qo

ajeptpued
30 Adod
P (11 s03 30
< BuLssadoud jeuty)
S03811 wouy

[
-t

uoLjezy|eLjLul yoea3 303fqQ

LINILO :9ALljLurag

A-77




(suanida 323fq0 404
¥23yd> Aduepunpad)
AHIYLO Ui pash

suoLje|assod 10/11

paladwod
\\\ snjels
andano AM Juepunpad
ks o SN
way sh's
: . 1011
SpAOM 0

Gl

80y,

J3jaweded peupwon

CIRY)
sed3 3230qo

peay

SP4OM /1

quiod buijeoly

I7W 00€€

U0132124400
10/11

323(qo
ajeplpued
30 Ados
(1L so3 jo0
< Gurssadcoud |euty)
S03911 wouy
210

Aauepunpad 404 UOLIR[34U0) 10/1L

1011 :3AL3IpuLad

A-78




31sanbau 1sanbau

asind 110 jurod bBuiieoty KBadua 110
(3sonbsa asind 10 007 (uorjezieLjrut
110 ssa204d) < 3Lt} 110 03 <— o043 322qo)
11024d Ol joedl ppy 3sanbaua ABusud L1INI10 wouy
T0YY1L0 110 553304 b¥31L0
SPAOM /¢

uotjezyjetitul alty 10 pue 3sanbaa Abadul

DIYYINI  :dALILwLug

Py




$1dS10

G10MdN

v10L74 v10%dN

S1dv10

S1dE10

s

£10L14

$1d210

S1d110

—

21014

I}

110174

403080




IW 80€Y saiLdu]
o1 =
(suotgeiaatod [y #) 19

sao3aiueard ‘| euLuwoN

suotje|aJduod
393(qo0 (¢) 3urod bureoly -~
‘ pajaduod 323fqo 3s93
P \ummno 1597 oLy 1w 4P 8zv+82 (suan3au ..
404 snjels *F ~ _
1nhd3no ~ £ouepunpa. Jjoedl 323LqQ s3oalqo ~ Lo ;wuhwwv ©
wa3sAs o] 33 LM peay 28U10 p 110114 E L -
40210 . 4319 93 399:99 15310 <
SPAOM ( SpAOM /pT X 31593 33e|3a4u0)

spead ,39S e3ep
ting, 13 aseap qe

uot3ouny HuLssadoud suaniad 10

Kouepunpad 403 ud3e[da4402 323[qQ0

403080 -8ALjtuled




yoea3 323(qo
Juepunpad

3nd3no <

wa3sAs

e o et e < e

NQY10

u4angad yoedl
1220q0 juepUNp3aIUCU AHIY10

I|AI||I ,
JUNTLO

o e et e o m——

(sudn3as 110 ¥oedun) TLONAD ©3

utod paxi uanias 110
jutod Pt (010 @Ltd) pLLeA |
Ly r
| G s B T
Kouepunpaa p:mv::vmv\wn < ﬁ»oaw>.soum i
ed
103 o PEcd QIAT10
SPAOM
Ke|3ap 0437

uot3dung Burssadoad uaniat 10

SuANjaJ4 1230qO 40j 323yd Aduepunpay

WHOHL0 :3Atitutdd




(Suanjaa 110 4331L4)
110474 oL

uanias 110
pajoedun

juiod paxiy

s
o~

AdNTL0

(9°¢) I11W 0001

uaniaa 110
Jews0434 “yoedupn

uanlad
yoea} 3d8fqo

JUBpUNPOAUOU
(su4nlaa 323{qo
P 404 323yd Aduepunpad)
~ AHIYLO wouy
1UNTLO

uor3ouny BuLssadoud suanlad 10

suanjad 110 joedup

[10MdN AL LliLtad




“30U0 uGie{ad+03 3123lqo
03 po1o3lgns st Yoeuy
1soybuou *Juepunpaauou yoej

133(qo0 3593

{uoriegoaaod
400080 0L
15310
LSOHY uaniads 140
passadoud
Indino wa3shs o) —< 600" ‘
<
1S0HD Y i
uin3au
vm;oupwwo . HdTL0
(uoirjededaud
asind z10) —<&—
S7dZ10 oL
1210
uan3as 140
DEFLFERY
(uo13eardaad
as(nd 119) —~&——rd —
SId4110 o1
s 0§/ 1110
S1 110 93e3s ul
Ly | [aMp uedy

Q0d saieAllde 210
03 UOL}LSURAT M3U yoe3

3Lty yoesd
193(q0 33 1AM

SPUOM 41

9ttty yoeal
123fqo peay

spaom /T

jutod buiieoys

(9°¢)
174 00001

udngaL
110 433{1t4

uan}as 140
paxoedun

AdNT 10

uoiouny Buissaosoud

su4n3ad

1101714

(suan3aua

}}—<&—— 110 oedun)

110Xdn wouy

suAn3aL {0

110 4331 ¢4

b

.




(3sanbau

1sanbau
astnd 110

jutod buirjeols

110 SS@d0ud)
11034d o©f

N

Zby110

(9°€) I7W 0001

sJa93aweded
Jepea 33ndwod pue
WA0j2AEM 32336

uaniads 110
paJaj| i}
P (suanjad 110 433LL4)
~ 1104714 wouy
1110

uoL3ouny 6urssadsoad suaniaa 10

astnd 110 a4edadd

SUTL0 :3AL3LwLad

A-85

ki,




_
|
|

indano
L fmum»m

© e o ———— e e

Juawbeday

llAmlll

o1

o4

suanias 210
juawbeaguou

S —

OY3INON

(suan3ad 210
¥dedun) 210¥dn OL

uJdniaa 210
payosy2

juiod paxiy

HJY410

WO

juawbeay e se

paddoap 323fqo
403 }I3Y)

uan3ada 210

(0da aLts)
S3|nsad pLLeA
uoL?l //f : (uaniaa 210 40
-RULWILAISLP < %93Yyd A3ipLiea)
m>_mmoa\\\< o~ 210077 woay
peay Q210
SpUOM (
Ae|3p-0432

uot3ouny Burssasouad suaniaa 10

suanlad 323fqo 403 Y23yd> Juawbe.y

AHI9YS  eAljtultag




jurod paxis

uaniaa 210
payoedun
(suaniau
210 4231t4)
210114 oL %dn2L1o

IW 0001

uanlad
jewuogad “yoedupn

suaniaJd 210

Juawbeasuou
(suan3aa 303fqo Jo04
- ¥oayd> Juawbedy)
~ AHI9Y4 woay
94d4NON

uotjouny Buissadoud suanias 10

suanjaJd 210 oedun

2i0Mdn  :aALjtuyd

A-87




UOLIRULWLAIS|P

aALssed _

LADSIP 404 323fq0 -

‘ 323(q0 4 .
aapssed) —&C—— !
“ aod oL ‘uUJdn33L |0 A43AD 404 BALIOR
! 200410 SL Q0d “91e31S SIYy3 uj
@ .
m /
3l1s yoeu3 w334 200
uaniad 210 uanlad 210 399(q0 33 LuM
* paual |ty “passasoud Juted bupeol payoedun ’. .
i (uorjeaedauad SpPAOM /T (suansz
| asind €10) < \MMMH//V } 1w 000 0T < 210 yoedur
! S1dEL0 OL \_/ TILEEY Z10Mdn wou
i €210 J4deLo 210 43114 AdNeLo @
m 3Ll yoeuy <
! 193(qo peay
{
! Spaom /b1
~ uan3aa 210
| pa.al L1
K (uorjeaedaud
asind z10) —<&—
S1d210 Ol
¢2l0
sw 0002

SL 210 23e3Ss u}

awyy [ [aMp uedy uot3ouny Burssasoud suaniaa 10

SUANI3A 210 4334

210174 :9ALIMwLAg




juiod burjeoyy

17 0001
Sa93aueaed aeped

i 1sanbaa
asind 210
(s3senbaa 210 An
$5320ud)
21074d ol 034210

91ndwod pue
WA0J9ARM 30313S

uanljod
210 Pa4alL Ly
(suan3ad
< 210 493114)
210174 woay
2210
210 mau
M3N210 uanlad
110 pasal| Ly
(suan3aa 110
—< 433114)
110114 woay
1210

uor3ouny bBuissadoad suanlad 10

3sanbaa as|nd 210 a4edaad

S1d210 :3Al3Luitdd

A-89

.




\ sKodap
{
m=au=o ||Am|||
wa3sks 0}
: A2010
: $10a0qd
suaniad Kodspuou
: €10
yoedun) —&—
g1oMdn oL
AJGNLO

skodap
plqlssod se
DEYRETT )
5129(q0

juiod paxi4

AQ240

IWO
£033p 404 3234)

apty s308fqo
Aoo3p ped

SPAOM 0

uan3ad €10
pLieA {suan3a4 €10 o
30 BuLyoayd %
A1LpLLeA) =<
£1007A Wo43
QIAEL0

Kelap 049z
uor3jouny purssasoad susniasd 10

suan3aJd 3230q0 404 I3W £K023Q

WHOADG 3ALItwtAd

JUNIIUW SIS

- - PP

Py

i




AD-A108 589  VERAC INC SAN DIEGO CA F/6 157301
AN ANALYSIS OF MMCS NETWORK ARCHITECTURES TO SUPPORT THE DATA P==gETCI(U)
DEC B0 J C TIERNAN DASG60-80-C-0017

UNCLASSIFIED R-008-80 N




] DR

& ""l |0 Fz s

o 22

" MSO

m TR ™
= e

Bz e e

}' ’*‘ ¢ MICROCOPY RESOLUTION TEST CHARI
. .
NATONAL Lk St ook CTANDRK[ L 1 a 1

\ -_“A




e ————

(suanjad €10 4931L4)
€10174 O1

jutod paxiy
uaniad £10 $390q0
payoedun Kodapuou
<« ol & Soa> Koacp)
o~ uaNgaL < o P
JeWa0494 .xumwcs I o MHIADQ wouiy
AdNELD AJANIO

uoj3ouny Bupssasoad suanlas 10

suanjas £i0 yoedup

£10MdN 9L LULAg

A-91




€10 31®3S ul
awi3 |[amMp ueay

LN MR A
uanlaa €10
paJallLy
(uoijeaedaad
as|nd p1g) —&—rl
S1dvio oL
£vi0
uaniad €10
paJal L L}
(uorjededaud
asind £10) —&
S1d€10 oL
€€10
su 000 T S}

LS

¥86°

- T

QOV Aq uoj3edpsLsseld AY
03 anp uotjisued]

uanjaa 110
passasoud

JYdEL0

A B B

3t yoea3
19900 33 fUM

alLy yoeqy
- 393fq0 peay

SPAOM /T

jutod Bujjeoly

17 000 O1

uanjad
€10 4934

-
-
F
-

suanlad €10
pajoedun

pd
™~

AdNELO

uop3duny Bupssadoud

SUAN33A

£€10114

(suanjaa
€10 joedun)
EL0NdN uwoLy

A-92

suanlad 10

€10 43314

tAALILULAY

-

e i e e i

e e




juiod Burjeoly

15anbad
asind €10
(sisanbas €10 An
$s300ud)
£1074d Ol OIYEL0

14 0001
sJaajaweaed

Jepeda azndwod
pue umoj
-3ARM 309|3S

suuanlaa
€10 pa43l Ll
.
T~
£€10
£10 Mau
MANELO IRLLEY

210 Pa4alLLy

<

-~

€210

(suanjau

€10 433113)
£101174 woa3

(suanjaq
210 4931L34)
210114 wouy

uopjouny Burssadoud suuniasd 10

3sanbaua asind £10 a4edasd

S1d€10 :9AL3LuLAd

A-93




————— T e — e T Sl

jurod paxiy

usnjad who uwin3as p10
paxoedun pLiea
(suanjau _ I 1W 0001 M 6 Acgsumm 10 30
10 4231}43) < uanjad < c_xuu:Whon”_hwuw
10174 oL $10 1euwmogas ¢ ydedun -
Adnv 10 QIAb10

uot3ouny Buyrssadroud sudniads jO

suanjaJd $10 yoedun

- PA0NdN  t3ALI LA

SN




uanias 410
pasal Lty
(uorjeaedauad = 1
asind G10)
§14610 01 510 .
winjaa 10 ( 3l e jutod bupjeoys uan3ad 10
passadoad {\y23(qo 33tuM payoedun A
miT IW 000 O1 P (sun3ad i
’ uAN3aL < 10 xummnuv .
1 49 pLOMdN y
Ydvlo // b10 43314 AdNPL0 . i
¢ uinias 410 9Lty yoesy w -
pausal Lt} 303(qo pesy M i
“comamsmamga :
asind pLo) < SPAOM LbT M {
S1dvl0 Ol ,
10
4
sw 000 € St ]

v10 23e3s ul
awly} |[Lamp uedy : {

uoj3ouny buissadsoud suanlad 10

suanjad 10 J°3LLd

v10174 :9ALILWLA

.




juiod Burjeoyy

3sanbad
asind ¥10 1N 0001
numwzwwmuwwmv < s4ajaweaed aepe
p10J4d ©) D3WpL0 _Eomww ”mswwmwu

usn3daL 10
paJallts ]
(uanjau b
<& 10 433113) h
$10174 wouty .
bv10
10 MaU it
j .
1l g
MINVLO - uAnl3ad €10 < ‘
paJal Ly
(uanjaa
< €10 493(13)
o~ €10114 wouy
e€v10 ]
uor3ouny bBurssadsoud sudnias 1o
3sanbau as|nd 10 asedaud .
1
STdv10 :9Atjtulud
t
.




jurod paxiy

uanlad qjio naa
L ﬂ@v_umﬁc_a 1 :va.vp“>m._.c
! (suanjaua P I 000T (uan3as g10 j0
h G10 433113) < unjau < Bupioayd A3tpyiea)
§i0L14 oL G10 jewu04aa “ydedun GL0GIA WO43
AdNSL0 QAGL0

uo13duny Bupssadoud suaniax 40

suanjas S10 xoedup

GlONdN :3ALjLutag




A-98

939 |dwod
1daouajul
1ndinQ <
wa3sAS v}
dWJINI uan3ad § 10 3Lt yoes3 quiod buireoly uanias 10
passadouad [\323{qo 33 t4pM paydedun
1M 000 o1 P (suanjau
\ g uAn3as < mhw xuuauzv
i \ly NEXRN S10Xdn wouj
i . UdSL0 \ 510 31 AdNS10
; uanjaa 10 4 alLs yoeuy
paJallty 323(qo peay
uoyyeaedaad
as(nd 610) —&— : SpAOM Lyl
! S1dsL0 Ol
! 610
|
“ sw 000 € st

10 3je3s ut
awLy |pamp ueay

uot3duny Butssadouad suaniaa 1o

SUJNIaL GLO 433114

S10174 :aAlILuLAYY

o




jurod burjeoys

31s3anbad
asind 10
(3sanbad 610 .
ss3204d) ~
51004d oOf
035 10

Il 0001

(uan3au

sdajauweaed aeped
33nduiod pue
Wa0j9ACM 303139

G 10 4331}3)
g10114 wouy

(u4n3au
$10 4331}14)

uanjaa 10
paJal| L}
<
<
;610
10 Mau
Hie
M3NGLO uaniaa ¢10
paJalt Ly
<
<
G10

10174 wouy

uo13ouny buissasoad suaniaa 10

3sanbas asynd §10 asedaad

$14610

19A13 L Ad




S1day

NOILONNS NOILYNIWIYISIQ L3780

rony




P

1sanoda as|nd
UG LJRULWEAISLP
dALIOR 1SAL

S1day oL : g
1ay

323[q0
patyissetaun

1ndano — = GL6"
wa3sAs o]

TINA

Sw 08P
aWwLy} [1aMp ueay

1nd3n0 ——
wa3sAs o)

B1LE

Il
OLjRULWLADSLP
At ssed

03 3LuM

(p) spuaom 962

(53502 43jsuedl

aLLs ejep sapn|out)
yoed3 32alqo uojeu
01 3314M - HULAOS [P
urod 6uileols aALssed
SPAOM [P1 e L 404 S$398[qo {suan3aa 210
UOLIRULWLADSLD - 210114
3ll} uoijeutw 3Assed wou 4
~44251p aALSSEd u.104.134 00d10
woJ4y pe?d
SpAOM 952
CIRY
yoeus3 3a3{qo
wou) peay
b spaoM [p1

uo433uny Q0

uojjeultadsip 329fqo dALssed

Q0d :9ALIMuLAd

Py




3sanbaa AY
3dadaajut

(3uswssasse
3daduajul) —=

SSVINI OL

AYINI

Kodap se
paLjLsseld

indino g 2L
wa3sAs o)

A023a

sw 000 1 st
awLy L1smg

paijLsseloun

Arowumgwam;a
asind

ay)
“s7day oL

Sav

393lqo
patjLsseld

SaY

/

alLs ad
01 31t4M

() 9s¢

3l av
0} 33}4M

() 6€1

ALy
yoeday 19alqo

01 93LuM
Lyl

2Lt ad
wo4j peay

(v) 9s2

alts Qv
woJ4} peay

(v) 61

CIRY
%oea3 1923(qo
wo4} peay

:o_pmzwe_;umwn
aaLssed 404 se awes
ay3 aq 03 pajeuwtls?

A-102

usn3ad
jutod BULIEOLL gy py e (suamyaa gy
ITW 002¢ 40 buiy23yd
uan3au -— K3tpLiea)
UoLIRULUILAOSLD QVQ1A wo4y
aAL13o®
5532044 1340V

uot3ouny Q0

s329(qo patjisseloun ‘uoLjeulMLADSLp 129{qo I LY

aov




PRLIISSELIUN  (59530q0 paryysseloun

P ‘uoLJeu LIS Lp
o~ 3223fq0 aA4300)
31sanbau jutod buijeoy GOy wouy
as\nd qy asind  qy sav
(3sanbaa gy __~ I7W 0001 —
ssaoouad) s4ajaueded
avoud o1 Jeped a3ndwod [l as|nd

03yay WA043ABM 323135 av UOLIRUHLIIS LD

3AL300 3S4LS
(uoijeupwLadstLp
< 323{q0 aayssed)
00d wo4y

tav

uogiduny 4o

' uotjededaad as|nd uOLIRULWLAISLP AALIOR ISdL4

S1dQY oAl Luitdd

A-103

indi,




P O S S A s B b R e SN S B

NOILONAS ONINNYd LdITUIINI

Cor—Cay Gom—Comy—=Con>

SSVINI

A-104

o




3dao4a3ul Ou

andino
wa3sAs of

ININ

(dnyas
ue|d 1daddajut
3dasaajut)
—
SdI o1

INI

passasse
$153Nbau
1da2493ut

jutod paxi3

SSVINI

(9) 17 00%
apeu aq

03 S1 3jdaddajul

JA3Y3dYyM SSISS

3sanbaa AY
1dadsualut (393fqo
patjissejoun
) uoLRULWLAISLD
~ T53{qo 8AL3de)
goy wo4}
N4INT

uoLouny fujuue(d 3dad4a3ul

udWSSASSE 1dadJaaju]

SSVINI

19A (3 LUILAd

sl




31s4nq .
paidtpaud
3nd3no <
wa3sAs 0}
y490Yd
uetd
. 1dasaajul jurod bupjeols ot
seuwt |d4d das431u :
e " : - (Juawssasse
(9) 17w 00OT 1dasaajui) mm “
m 1 -
1dsouajulL 403 ueyd SSYINI wo4j <
Kaeuiuy {dad autwiayag INI

ue|d 3dasuajuy
Kaeurwiiaad

(uoyyeaausb ueld

adasaaul)  —~<—f
9dl Ol

N1d3dd

uo13ouny bupuueid 3dadaajul

dnjas ueid 3dadudjug

Sdl  :aALILuLAg




ueid 404
uojjeziraoyjne
3sanbau
(uotjeziaoyine P
youney) o~
Nv1 o)
03UNd

ejep
354nq 4€3|ONU
Wwo4j peay

01

3st]
fyraotad waey
wouy peay

01

juiod 6upjeoly ueld 3daduajul

(9) 1 o001
ueyd
3daduajulL
9391 dwod

Kieupwt |aad
(dmas
< ueld 3dasaajul)
SdI wo4j
N1d34d

uoj3ouny butuue|d 3daduaju]

uojjeaauab ueid 3dadsdu]

9d1  :9AlIjulAd

A-107

A 2e




( ! R e T

*paidacudjuL 9q 03 e S, AY JO G°
Ke|op 2as ¢ © aq 03 3e3 [RA4AIUL fujuueld 3dadaazul

pazjaoyne ag 03 paumsse
aJe sisanbaa uepd (Ly

ueid N
, paziaoyine )
(3suodsau
uotjeziaoyne youney) —— L
¥yl ol . ueid uegd 404 .
N1dX0 40 }oayYd uoj3eziaoyne o
g anpou 1sanbauy = w
I (uoypyeasauab o
< ueld 3daduajul) <
i B ~ 941 wo4y
MHIQOW OIYNd
and3no walsAs 0f
AWWNT
Ae}dp-0437

uoL3ouny 3{Npow

uoLjezaoyine youney

Ny ieAlltulad




¥

ue|d

(a3epdn 23epdn

3daduajuy

g
pafe|ap)

dnil3a oy

[7dadn

pajuawa|duy
jou ueid

3nd3ino

wajsAs o]

WINNd
snje3s ueld
1dadudjut

INdIno o
wa3sAs o}

V1SINI

ueyd
Aaeuwy [dad
passadoad

N1ddvl

ajew}ys?
uor3sod
doouajul 33 lay

(9) s¢

snjels
uswa (qeud peady

(9) o1

elep 31s54nq
Je3a|doNu peay

(9) ot
e3ep Si4qap
4935009 peay

(9) o1

e3Rp Sn3els
alLssiu peay

(9) o1

yoeay
123fqo0 peay

i

jujod buijeoly

.

(9) I 0002

juiod 3dadsuajul
aje|no|edad pue
asuodsaa youney

duLwuaaq

2
ueyd <
paziaoyine
(uoijeziuaoyne
. younet)
NV wouy
N1dX0

asuodsad uorjeziaoyine youne

YV

19AL3 JULAd

o




s 0G S} |eA4d3uy ajepdn [eujwoN

__{eAuajuy sjepdn -
anonb N1dodn ut F - o1

:(opow aug(adid e st |eALajul ajepdn 40 |3pOY

ueyd
93 epdn (3urod o
P 31dasruajul 1
< ajeno|edad)
dIy wouy
raonos { 27dadn ~
(3urod PaLPaAI* ue|d ajepdn ]
HQQULOW:_. , | \ Lapout /’ - ..
aje(naedad) m /// LeAad3ulL \\, -2 |
dIy oL OIS ajepdn T
_ N7dddn ueid
ajepdn - (suodsaua
uoLjeziaoyine
& youne})
dy1 wouy
11dadn

ajepdn 3dadcuajulL pake]ag

dNI730  :3Atltutad




ueid
alepdn

l,

21dadn

(91epdn

daduajut
pafelap)
dnIlig oL

snjels uetd
Jdaddalut

l@

Y1SINI

andano T
wa3sAs of

asuodsad

juiod
1dalduajul
pajie(nd{eIay

(Butssadoud youne|

asuodsad —

youne( Leuts)
—
dSuNYl

ddld oL

puemALod ydunel

d17v8

andano | L10*

walsAs Ol

QHONY

ajewilse
uot3isod 3dad
-433Ul 33L4M

(9) st

snjels
Juawa | qeud
peay

{3) ot

eep 3sNq
Jeaonu peay

(9) o1

\

e3ep SL4qap
433500q peay

f9) ot

ejep snijels
aLSSLu peay

(9) o1

yoeuy
193(q0 "3y

juiod butjeoyy

ajepdn

(9) 17W 0002

jurod 3daduajut
33e1Nnd1ed3Yy

palnpayds

rll._rlll‘||.|l

0dNHIS

jutod 3daduajul 33e|Nd|eIY

diy ¥ HuLAd

A-1

(®3epdn
jdasuajut

pake|ap) :
dn1n30 woay -

.




(3ssnbau asind
g4 SS9204d)

9WY4d Of

_
™~

3sanbaa
asind
asuepLnb
aptLssiw
IS4ty

jutod bugjeopy

1b3yon

(9) 17 0001

burssaooud
asuodsau
youne| [eutq

asuodsad
youney
(3utod
P 3dasuajuy e nd{edd4)
< dI¥d wouy
dSUNVYT

Butssasoud asuodsad younep jeuiy

d41d  :aALdLuLag

A-112




S1dIN

el

NOILONNJ T0YINOD ¥0LdIJUILINI

[}

WL

A-113

[PV UPP N WP




u4aniad 9y
payoedun

jutod paxiy

(suan3aa oy 4911 L4)

W14 ol

AdNIW

(9) 17w 0001

UANIaL Oy
pLieA

uanjad 9y
jeuMojad yoedun

&
™~

QAN

(uanjas 9 j0
Bugydayd AILpLLeA)
9WATIA Wouy

u4anjad g yoedun

9WNdN  :9ALILWLAG

A-114

---w




uopjedote
ABasua AL LSSLW

93 L4M
(9) o1
Mwwﬁmsou joed3 aLLssiw
3d32433ut 334N .
ndino (9) 09
w3l sAs 0} ejep -~
dWILINI R 1s4nq 4e3|oNU juiod BULIBOLY i inqau gy -
peay v
pa4dlL L} V4 (9) o1 [H 00001 pajyoedun &
uan}as
muchHmMWmm N334 wzaxumwcsv -
son3u05 o peay 9w 43314 OWdN WOoL4 !
uoyjedsedaad : AdNI
( as|nd 1dasusijuL (9) o1 i
aouepinb
alLsstw) uoLjeodoy|e
S1doW ©O1 £Badud 3| LSSLw
ININOD peay
(9) o1
yoeAJ BLLSSLUW
woz st peay ,
Wi} {lamp uedy . (9) 09 uoL3ouny [043u0) 403dad433u]

SuANAJ 9 43314

yoes3 323(qo

peay Wil aALtuiad

i .
]




T AT T

_
'
.
¥

(s3sanbaa as5|nd
oW Sssad0ud)
9Wldd Ol

31sanbau
asynd 9K

jutod burieols

z
™~

20349n

(9) 1 0001

su373weded
Jeped 9a3ndwod
‘WA0JIABM 303|935

$3NU1U0D
3dasuajul
< (SU4N3aa G 431 L4)
OWLT4 wouy
ININOD

uoL3duny |043u0d 403dad43IU]

uorieaedaad asind 9y

S1d9W  :3ALILWLAd

A-116




Appendix B

PAES: Processing Architecture
Evaluation Simulation

Approach and Capabilities

QIERAS




1.0

2.0

3.0

4.0

Section

L aea e YT e e e e e e -

TABLE OF CONTENTS

INTRODUCTION . . . . . . . .

1.1 Approach. . . . . . e e e s e e e « e e e
1.2 Software Overview . . « ¢ ¢ ¢ ¢ ¢ ¢« ¢ o o & &
1.3 Verification. . . . . ¢« ¢ ¢ ¢ 4 ¢ ¢ o o ¢ = &

SOFTWARE STRUCTURE . . . . . .

..........

2.1 Define Process Block. . . . « . . . .« e s e
2.2 Define Architecture Block . . . . « ¢« &« ¢« « .
2.3 Define Scenario . « ¢ ¢ ¢« ¢ ¢« o o o o » « . .
2.4 Run-Time ProcessesS. « « o« « ¢ v « o o =« « .
2.5 €Evaluation/Documentation. . . . . . . . . . .

CAPABILITIES AND LIMITATIONS OF PAES . . . . .

3.1 Process Design Features . . . . . o e e e s
3.2 Simulation Run-Time Features. . . . . . .
3.3 Report Generation Features. . . . . . . . ..

SUMMARY. . . . .

c—d

b L-J L _J

[ R W

e L L s

L




LIST OF FIGURES

1 Structure of PAES . . . . . . ... 000 3
2 Functional Process Model. . . . . . . . . . . . . 4
3 PRIMITIVE Structure . . . . . . . . .« o o o .. 6
4 LINK Structure. . . . . . . . ¢ v o v ¢ o o .. 7
5 Distributed Processing Architectural Features
Imposed Over a Process Flow Model . . . . . . . . 8
6 NODE Structure. . . . . e e e e e e e e e 10
7 BUS Structure . . . . . . e e e s e e e e e e 11
8 RESOURCE Structure. . . . . . « ¢ v ¢ o o« v o & . 12
9 Scenario Input Mechanism. . . . . t e e e e e e 16
10 Functional Model. ., . . . e e e e e e . e e . 17
' 11 Example Evaluation Results for the PAES . . . . . 19

Ate




1.0 INTROOUCTION

This memorandum provides a user-oriented description of the
Processing Architecture Evaluation Simulation (PAES) that has been
developed by VERAC for use in:

(1) Evaluating performance of distributed and central processing
systems;

(2) Evaluating and trading-off the performance of communications .
network protocols and architectures;

(3) Trade-off analysis of processor architectures in performing a
specific job, task or function; This includes evaluation of
the trade-off between a large central processor and
distributed data processing architectures.

1.1 Approach

The PAES simulation simulates throughput, response time,
port-to-port delay and other performance factors for a single or
multicomputer processing system. The simulation is structured to allow
independent specffication of the functional process to be realized, and"’
of the computer architecture along with interconnect structure that is
to be evaluated. The function to be performed is defined by: (1) a set
of elementary functions designated as PRIMITIVES and, (2) a set of LINKS
that interconnect PRIMITIVES. PRIMITIVES model an elemental function by
means of a set of queues separated by transform elements. The queues
contain “work units" and the transform elements cause the transfer of
work units between queues in accordance with the rules of an algorithm
derived to model the function. The architecture of a computer system is
modeled by its effect on transform speed or delay. The performance of
an architecture is analyzed by evaluating the number of work units in
the queues as a function of time, and by the flow of work units through
the functional process.




1.2 Software Overview

PAES has been designed from the top. The structure is such that
the simulation can run on a small minicomputer, but can be elaborated to
provide more detailed modeling when resident in a larger computer. This
is accomplished by having the models for operating systems, bus control
protocols, and external resources as subroutines at the bottom of the
code structure. PAES is initially resident on the PD°-11/34 and an
associated large disk. The software is segmented with an interactive
front-end portion for definition of the simulation data base and a
tightly coded run-time portion for the actual simulation run-segment
portion (Figure 1). The run-time segment with its data set resides
totally in one page (32K/16b) of the PDP-11/34.

The simulation is presently specified to model a process on the
order of 150 functional elements (PRIMITIVES). Processor architecture
modeling is presently sized at 30 computers with operating systems; 30
intercomputer busses; and 50 resources (disks, terminals, associative
memories, etc.). This sizing is oriented to the PDP-11/34 size and
speed constraints.

1.3 Verification

PAES provides simulation definition by means of a set of databases
that are formed interactively in a series of steps. Each of the
databases in the sequence FPRO, ARCH, SCEN, and RTSU relates to the
structure imposed by the databases appearing earlier in the sequence.

PAES provides an evaluation of the internal consistency of each
database, as well as of the consistency of the database with the set of
databases to which it relates. A consistency report is given to the
operator when he exits the database definition session.

QIERAS




S3Vd 40 aun3onu3s

, . NOILVINZH31dWI S3vd

!
MOILYHINIG LMO4TH HOTLVINITYO :NOLLYLN}INO Al
DVLTHT LInsuy Sivd
All‘l\‘
d LNALPO NOLLYIPHIS »
4
m -A/
! 400 NOILVINWIS ISV{ NOLIVINI(YO MiLAY
M (NAILN00 NLINGLS) NVULIT  :30VNONYT SIvd

I\.\

NMY HOLLYICWIS
i ¥04 ISVEVIVQ

MOILINISIQ ISVGYLYG IALLIVEILNG NOILVINIIEO smuw
ISYd T3NINYTY ‘Sivd

i SYILIAVEYA MIL-NNY o ISvaviva
\ SOI¥NIIS » NNLIOKLS
SIUNLIILIHIYY o
SNOLLNNS & _ _

(1NJA493S IWIL-uNg) A

‘T a4nbyy

4001
19

LIRSS
QN3 LNGds
NN

NY1d MOTd S3vd

oN)

t

NOTLVLINIRNIOG
/4011YN VAL

17
Lvis

-—— ——

HINOYHL AOV3
A11a-0

i

HONOAHL MO
JALLIWIYY

i

$13141)
J¥NL2ILINIYY

no14
INYEAO)

1

¥3A1¥0
014¥N1)S

P S

031407
Ny 13S

i

IS
b1 ¥D)]

I

NALIILTHGeY
N1

1

ROl4 SSIIN4
MIN

t

14713




2.0 SOFTWARE STRUCTURE

The software is segmented and structured as shown in Figure 1.
This structure consists of an interactive portion ("FRONT-END")
dedicated to interactive definition of the data bases and implemented in
PASCAL, a portion for the actual simulation {"RUN-TIME") dedicated to
rapid execution of the simulation and implemented in a structured
FORTRAN, and an interactive portion for output formatting and selection
("REPORT/EVALUATE") also implemented in structured FORTRAN. The PAES
blocks presented in the top-level flow diagram of the figure are
summarized in the following subsections.

2.1 Define Process Flow Block

®

O PRIMITIVE

d — LINY

Figure 2. Functional Process Model

The functional process consists of a set of PRIMITIVES and LINKS as
depicted above. The task that is to be performed by the processing

VERAC

incorporated




_— I ————
. m e e B - - e m e e e —— - -

architecture which is to be simulated must be defined in terms of these

PRIMITIVES and LINKS by the PAES user. The Define Process Flow software

block provides the means for the user to build the data base FPRO that
contains the functional process definition.

Figure 3 presents an example PRIMITIVE. A PRIMITIVE consists of a
sequence of queue sets separated by transforms of various types. Each
queue contains “work units". These model meaningful aggregates of data

associated with transfer of control (i.e. tokens) that are processed in

performing the function. The PAES user must define the work unit at
each queue in terms that are meaningful in the context of the function
being performed. The PRIMITIVE is structured for:

°® multiple inputs
algorithm complexity modeling

° modeling of references to external resources as well as
scheduling constraints '

° distribution of outputs.

External Accesses are named, but not related to architecture (e.g.
memory devices, terminals, modems, etc.) during functional definition.
Algorithm size is modeled in terms of an arbitrary or canonical step

size appropriate to the function. Instruction count is not directly
specified.

In a later block, architectural effects are modeled as imposing
algorithm execution rates and external access delays on the PRIMITIVE.
These parameters regulate the work unit flow through the PRIMITIVE

A LINK is structured simply as an input and an output queue that
are connected by a path allowing work unit flow. This is depicted in
Figure 4.

[

-

(I




-.
F—————— — e L -
. |
| |
' (
[RHI1A l
—ly EXTERNAL  LINK
1 ACCESS —
| |
I . O
I e . . ;
| * .
| ALGORITHM |
i i — MODEL !
| COMBINING !
' QUEUE RPANCHING
(PRIMITIVE OUEUE I
| LORDING} i
]
LiNK I \ l
— EXTERNAL Lo
| ACCESS
I 1wur !
QUEVES QutPUT i
| CUELES |
.

Figure 3. PRIMITIVE Structure

VERAC |
@Lﬁ_«ﬂonhd —




oo ——pi

D= [0 ee

PRIMITIVE a . PRIMITIVE b

Figure 4. LINK Structure

The LINK queues are specified as part of the PRIMITIVES In which they
reside. At the functional level, LINKS contain no structure. They

simply model the flow of control between the elementary functional
sections (PRIMITIVES).

At an architectural level LINKS can be used to represent activation
of subprocesses through an applications operating system; transfer of
control within a single praogram; or transfer of control between
processors by means of a bus.

A data size (in bits) is associated with a work unit in the input
queue to a LINK. Thus, transfer on data busses of data that is
coincident or intimately associated with transfer of control (i.e.
parameter set transfer) is modeled within the flow of control context.
Transfer of data that is not associated with immediate transfer of
control (i.e. data base access) is modeled within the PRIMITIVE as an
EXTERNAL ACCESS or, possibly, as an additional number of algorithm
steps. The modeling approach selected for this aspect depends on the
nature of the data and the designers interest.

This technique for modeling the functional process has two salient,
but strongly salutory effects on the system analysis and design effort;

(1) The user is forced to define the problem outside of the
context of his notion of the machines that will support the




process. This constraint forces the user to one further
level of abstraction at the initial step of the
analysis/design process (a higher T0? in TOP-DOWN). The
benefits of this can be early revelation of design flaws, and
also simplification of the design.

(2) By forcing a structured definition of the problem, a much
clearer context for discussion is presented to a set of
designers. This allows for clearly articulated design issues
and leads to well-defined interfaces.

2.2 Define Architecture Block

RESOURCES

] O _ /w3
| -
~
O PRIMITIVE

e L INK

Figure 5. Distributed Processing Architectural
Features Imposed Over a Process Flow Model

VERAC

incorporated




The processing architecture to be simulated consists of a set of NODES,
RESOURCES, and BUSSES. The user interactively specifies the
architecture by laying ip over the functional process which was defined
in FPRO during the Process Definition Block. The structure is depicted
in Figure 5. A NODE is a computer in the sense that it contains
instructions and a local data memory, and that processing is
accomplished under a single operating system model. BUSSES are physical
communications channels that carry data between NODES. RESOURCES are
devices external to NODES and are accessed for data aor for control
action in order that functions may be carried out. These accesses are
to such devices as shared memories, disks, and user terminals. Process
interaction between various work unit flow paths such as scheduling is
also modeled as a RESOURCE. The RESOURCE modeled in scheduling is time.

The architecture to be simulated must be defined in terms of these
NODES, BUSSES, and RESOURCES by the PAELS user. Scenarios to be
simulated are represented as sequences of work unit inputs. The

scenario input points (External Accesses) are left unassigned during the
definition of the arcnitecture.

The three architectural modeling structures are presented in
Figures 6, 7, and 8 and are discussed below.

A NODE (Figure 6) is a model of a single processor or computer.
The user defines NODES with a certain set of attributes during the
architectural definition phase. Basic featurec defined are:

(1) instruction execution rate, and
(2) an instruction/algorithm-step-size factor for a set of
instruction mixes.

The second item allows characterization of the effect of the instruction
mix on algorithm processing (e.g. arithmetic fixed, arithmetic floating,
string processing, logical, memory access intensive, etc.). Careful
modeling of this parameter set can be used to trade-off the effects of




VERAC

incorporated

j . [; ernal

pmemar emaem

l Eaternal
Davice

|A:cess
i Mode?

frzzution Speed )

| .
Erecution Sheed n

Figure 6. NODE Structure

Cuerating System Bevice e !
tozel ' Atcess | '
) | Bl l

lz_-_;_x




———— B N T it R b ol o —————— P

Bus Access
Delay Model

I

!

l :
| )

| |

|

|

Pricitive 7
3 Link C‘

|
I
|

|
|
I
I
I
I
|

Link Cn
Prinitive
l bn

I I

— —— — e cmme eem e

3 -
Figure 7. BUS Structure
: 11




External Resource
Accessing Delay Mode)

Transfer Speed

Figure 8, RESOURCE Structure

incorporated 2




microprogrammed special-purpose instructions or of hardware featureS
such as hardware floating point or auxillary fast memory.

The tasking of functional responsibilities to computers is
accomplished by the operator by assigning PRIMITIVES to NODES. This
structure can allow determination of total instruction and data memory
required.

An operating system is specified for the NODE. This is mechanized
as follows: A set of operating systems are implemented as subroutines
at the bottom of the code. MNew or special purpose systems are simply
modeled in a new subroutine. The operating system models determine a
proportioning of the computing time to each PRIMITIVE, taking into
account the requirement of the operating system itself with its
associated handlers. The proportioning is recalculated on each
simulation time cycle, aT. The operating systems use as input the
loading (number of work units) in the Combining Queues (see Figure 3)
for the sets of PRIMITIVES that have been assigned to the NODES. The
simplest operating system model is a fixed proportioning of the
computing time among PRIMITIVES. The most complex model treats a work
unit arrival at a PRIMITIVE combining queue as a call to the operating
system for a task. This model can include priority queuing, aging
algorithms, polling, and variable overhead factors. This model can
cause a single PRIMITIVE or set of PRIMITIVES to have time for a number
of AT cycles representing active tasks in core. Work unit flow in the
remaining PRIMITIVES of the NODE can be stopped, thereby modeling
inactive processes. Delays for external device data handling in the
NODE are also provided by the user to allow this factor to be included
in the determination of the performance of a given processing
configuration.

The second type of structure included in an architecture model is
the BUS (Figure 7). The BUS models physical data channels between
processors (NODES). The BUS structure may also be utilized if the
designer so selects to model flow of control associated with passing
data through a slow memory in a very large computer.




The basic parameter associated with a BUS is the data transfer rate
in bits/sec. The BUS model regulates the transfer of work units on
LINKS between certain PRIMITIVES. A work unit can be thought of as a
packet or block transfer in this context. The size of the work unit
(i.e. data block) determines the work unit transfer rate because of
loading. Thus, in the LINK input queues, a size, in bits of

information, is assigned to work units.

The BUS model is assigned a set of LINKS representing functional
data transfer paths that share one physical bus or channel.

Lastly the BUS model is assigned a protocol model selected from a
set of protocol models available as subroutines in the simulation.
These models, as with the operating system models, reside at the bottom
of the PAES code structure. New protocols are easily created or
existing protocols modified. The input to a protocol model is the work
unit loading of the set of LINK input queues for the BUS. The output of

; a protocol modal is the transfer rates for each LINK in a aT period. A
; simple model might allocate a fixed rate to each LINK (TDMA)
independently of the loading. A more complex model might mocel the
delays associated with contention access (ALOHA-type) that are a
function of loading. A most complex model would treat the work unit
loading as DAMA requests and compute transfer rates based on priority,
age-of-request, and BUS control overhead.

The similarity in the underlying structure of the BUS and NODE
models is due to the fact that both structures represent hardware
resources with an associated resource allocation structure. This same
structure is apparent in the modeling of an external resource. The
approach of allowing the allocation mechanism to be modeled in as great
a detail as the user wishes, but within a very formal structure
represents one of the strengths of the PAES approach.

1 The third type of architectural structure is the RESOURCE (Figure

8). This structure is used to model any delay in flow of control that
is caused by a process reference to an external device. Examples of

QD YERaS

14




JRIUNEALT .Sy W RO PR Cers e ae et

RESOURCES to be modeled are external memory devices, interactive
terminals, and sensors. A more subtle example is scheduling where the
RESQURCE model may reference a real-time clock that can be thought of as
a "resource". A process factor also to be modeled that is similar to
scheduling is algorithmic delay that depends on the state of distinct
functional processes. This too can be most conveniently modeled within
the RESOURCE structure.

The objective of the RESOURCE model is to compute delays for a set
of PRIMITIVES that interact with the RESOURCE. For example, a number of
PRIMITIVES situated in distinct computers may require data files from a
single disk. The basic parameters to be modeled by the RESOURCE are the
data transfer speed and the delay associated with the access (e.g. mean
head search time for a disk). These factors are included in the model.

The RESQURCE model is assigned a set of PRIMITIVES and specific
EXTERNAL ACCESSES by the user. This assignment reflects the functional
role 'of the RESOURCE. The functional need reflected in the PRIMITIVE
EXTERNAL ACCESS such as need for a data base reference is mapped to an
architectural structure such as the reference to an external, large core
memory or disk. )

An accessing model is also included in the resource. This model
utilizes the loading of the referencing PRIMITIVES as input and produces
access delays for each of the referencing PRIMITIVES. An example of a
complex accessing model might be that for a crossbar-switched,
multiple-processor/multiple-memory structure such as the S-1
architecture. Access delays associated with the crossbar bus
availability could be modeled in great detail in the simuiation.

15

——



2.3 Define Scenario

Scenario
Input

EXTERNAL
ACCESS

Figure 9. Scenario Input Mechanism

Scenarios are modeled by injecting work units into a set of
PRIMITIVES in accordance with a specified time distribution. The
scenario is implementad by assigning EXTERNAL ACCESSES to a scenario
input structure rather than to a RESOURCE. The user performs this
assignment interactively in the Scenario definition block.

Each input stream may be specified by the user as a time function,
or it may be specified by the user to reference an external disk or tape’
file. The first capability allows convenient and expedient modeling
appropriate for most analytic requirements. The second capability
allows utilization of data recorded during experimentation with the
target system environment or with a partially completed system. It also
allows creation (on tape or disk) and utilization by the user of
scenario loading patterns that are not conveniently represented
analytically.

VERAC

oated —




(1)

(2)

Scenarac

Evaluation
ane Rejo-ting

Figure 10. At run-time work unit flow is generated in the functional
model. Flow rates are determined by architectural models, Inputs are
generated by the Scenario model. Outputs are to evaluation and
reporting files.

Run-time processing consists of the following stages (see Figure 1).

Set Run Control - The simulation time increment is set. The total
run-time is set. Warning conditions are specified. Output reports
and port-to-port tracers are specified. This is performed as the

* last step in FRONT-END interaction.

Scenarijo Driver and Combine Flow - These blocks are located at the
top of the actual scenario time-increment loop. They provide
bookkeeping functions for the update of the state of the loop in
each aT increment. These functions include moving tracers within
the model and updating the time history of queues being studied.




(3) Architectural Effects - This block provides the computations

required for operating systems, bus protocols, and resource
allocations. Rates of work unit flow are computed and stored.

(4) PRIMITIVE Flow Through and 0-Delay Flow Through - These blocks
provide the transfer of work units within the model based on the

rates provided by the Architectural Effects block.

2.5 Evaluation/Documentation

During the run-time of the simulation, files are developed of the
loading of specified queues, port-to-port transit times and CPU
utilization. The Evaluation/Documentation block allows the user to
review these performance curves on a display and to obtain labeled
hardcopy graphics of the output, if this is desired. Figure 11 presents
example results from a PAES run.

QEERAS

18




, [
T 2.00teaa
L'}
L ]
b §
"
-
[ 4
. |.n:w.\e'.a|:vj
Y
)
[ BNANTZY 1Y v LA v
a.08DE-01 3.3°3E-m2 6.L57C2 1.222€.09
Tiee In naoe
U UTILITATION FOR PRIIIIVE 2
Average Yoluse ever an Interval
. 1.0 en
(a) Scenario Input
;
v B.C87E-007
v
t
]
]
1]
3
H 3.3336-0¢1
{
[ ]
THPEAD 2 INTERVAL » 2§ MSFD
OELTA T » & MSET
dearops Yoluas over an I-~tervel 0.005-9y . .
1.03C 029 [ N -~1at 1] 3,209t 92 6.CETEFR [ T
Tive In seee
o soeead (b) CPU Utilization
L 4
s i
: \
»
[ 4
1
L 4
Q.89 . v -
2.08C-01 9.2880%2 $.8877-02 1.023%+08
$terl Tiva 1A nave
(c) Port-to-Port Response
Figure 11. Example Evaluation Results for the PAES
Processor Architecture Evaluation Simulator
19
* 7

Lo

J

'
nd

[N




3.0 CAPABILITIES AND LIMITATIONS OF PAES

The PAES simulation is time-driven. Thus, it offers a natural
vehicle for measuring rates of flow, loading, and utilization for
processing networks. The loading of any internal queue, operating
system, bus, or resource can be easily observed because of the flexibly
structured method of report generation that is embedded in PAES. Time
for performance of any function or for sequences of functions related by
control flow is provided in PAES by a tracer structure. Figure 11
presents examples of the output of PAES measurements.

The elemental unit of flow in PAES is the work unit. The work
units are transferred from queue to queue in the process model at a rate
determined by algorithm, access, and architecture modeling. The work
unit represents, principally, the flow of control from one process stage
to the next. In this sense it is a "token". However, it is the nature
of process flow that normally data flows with the transfer of control.
It is normal for the “"event” of a data transfer to control the
“activation" of a subprocess. HWork units are given a size in bits to
allow modeling of the transfer of data with control. This size can
model, as examples, the size of a parameter set associated with an
action call by a task to an operating system; the size of a parameter
set passed to a sub-block of a program; or the size of a data block
transmitted on a bus. Thus, it is natural to model the time-~of-arrival
of the last fractional increment of a work unit as the time of the
action-call to the related operating system or the time of the
requirement for databus capacity. This discrete aspect of flow is
provided automatically by PAES by ailowing only integer work unit
transfers across links. Modeling of operating system and external
access device interactions with work units is done by the designer.

3.1 Process Desian Features

PAES FRONT END flow and database structure is designed to support,
in a natural way, the analysis and design of a processing system. A
fully interactive interface is supported to facilitate ease of designer
interaction with the simulation.

VERAC

20




The first stage in the analysis process is definition of the
process to be performed. The analyst performs this task in a structured
way by developing tha PRIMITIVE and LINK structure that defines the
problem. When this development occurs within a planned series of
reviews and tests with documentation, we consider it a part of a total
design methodology. This methodology is denoted PAEM (Processing
Architecture Evaluation Methodology). The process or function is
defined in database FPRO (Functional Process).

In order for the designer to davelop FPRO, he must decide on
algorithm sizes, flow of control, database structure, and system
input/outputs. The nature of the FPRO model is that the definition of
the job to be performed is clearly presented. Also sizing assumptions
by the designer are evident. In a formal design environment this
structure is documented and reviewed. It is a natural format for
ironing out differences in view of the problem to be solved or of sizing
assumptions. Specialists in algorithms to be supported can contribute
sizing estimates without architectural limitations; separate
organizations that are working on different aspects of the problem have
a common basis of reference; and users who have specified the work have
an opportunity to review a clearly articulated statement of the problem
to consider if system requirements have indeed been correctly
addressed. These f2atures all promise to lead to solid and consistent
problem definition.

Testing of the process definition in FPRD is an extremely valuable
stage in design development. HNormally, a specification will contain
performance requirements consisting of algorithm accuracies, throughput
requirements, loading limits, and port-to-port responses. Also, certain
architectural features such as a disk memory or a batabus will be
specified. Possibly, the processor will be specified and the design
problem is limited to structuring the software and operating system.
Architectural features can be implemented and specification limits on
timing can be implemented as gross delays introduced by pseudonodes.

The process can then be simulated at a very high MIP rate. The results

21




—

indicate loading throughput, end response times inherent in the

specification. Performance inconsistencies that occur at this stage are

due to specification inconsistencies only, since no design limitations
are imposed. In a PAEM environment a formal review of the process
definition and the specification is appropriate at this point.

The second stage of database definition in PAES is the
specification of the processing system architecture, ARCH. This
includes the set of processors, operating systems, external memories,
terminals, modems, and interconnect busses. The ARCH database
definition is verified automatically for consistency with the specified
FPRO. Multiple architectures can be structured for each FPRO to allow
easy trade-off performance analysis.

A computer is modeled as a NODE. A NODE is assigned a set of
elemental functions. A NODE is characterized by an instruction cycle
rate (e.g., 1 MIP). The designer can select a number of instruction
mixes and assign a multiplier to reflect instruction-cycles/instruction
for a given mix. The mix type of a given algorithm is specified in the
PRIMITIVE. Thus, the designer has great flexibility in modeling the i
impact of the types of instructions used in an algorithm on the
processing speed. This feature can be of immense value when evaluating
instruction set options for a microcoded machine and when evaluating the
impact of floating point hardware.

The computer model contains an operating system designator and a
parameter set. This data is provided by the user interactively to
designate the operating system. A set of operating system models is
carried in the PAES code as subroutines. The user has the option to
provide a new operating system subroutine or to modify an old one. This
feature allows the user to select the level of operating system model
appropriate for his needs. A very detailed model can be used to study
trade-offs in operating system types or in evaluating parameter settings
in an operating system. The computer model also carries the list of
external accesses occuring from the node. A delay is associated by the
user with each access. This delay is to model handler swapping and

VERAC




i d

R

processing times. It may be incorporated in the operating system
overhead computation.

An interconect between processors is modeled as a BUS. The user
defines the bus and assigns functional LINKS to it. The BUS normally
models a physical entity that interconnects elements of the system.
Examples are a simple RS232 aéynchronous line, or a complex Ethernet
databus. BUS models can also be used to model transfer of control in
large processors where activation of a task involves a significantly
slow process of access to a large memory to read activation parameters.

BUS models include a specification of the data rate supported in
bits-per-second. The models also include a protocol model implemented
as is the operating system for the NODE. The designer interactively
designates a parameter set and a protocol type for a bus. Protocol
types are carried as subroutines in the PAES code. The designer can
provide subroutines for protocols in as much detail as needed. For
analysis and trade-off of network architectures, the designer can
impiement a complete protocol. HNote that busses transmit work units and
work units model packets of communications data. Thus, the relation
between the bus architecture and the real world can be accurately
established by a correctly modeled work unit input and a carefully
structured protocol.

External resources are the third type of structure defined by the
designer. These resources model devices external to the processing
chain and compiex processes that interact with multiple primitives.
Examples of the former are bulk memory devices, modems, and terminals
(with operators). Examples of the latter are subprocesses who:a
processing is a function of the loading on other subprocesses, and
secondiy, schedulers of work unit flow from multiple primitives.

External resource models include access line rates and a model of
access protocal. This protocol model is of the form of the resource
control models for the previous two structures - the operating system
and the network protocol. The designer can specify a resource type and

23

———




a parameter set for each resource modeled. The designer can providé a
subroutine to PAES that models an external device to any level of detail
of interest. Detailed models would be appropriate, for example, for
study of contention resolution approaches for a bulk memory, or, as a
second example, for analyzing various scheduling algorithms.

Scenarios are defined by the designer in database SCEN during the
third stage of design definition. The designer has complete flexibility
in designating the scenario inputs. Scenarios are modeled as work unit
loadings on external accesses. The access points are specified by the
designer during this stage. Analytic descriptions of loading can be
provided by tne designer by interactively specifying a curve type and
parameter set for curves carried as subroutines in PAES. Subroutines of
arbitrary histograms can also be provided by the designer. The designer
can also specify an access to a disk or tape and the access format and
record designation. This allows scenario data to be used that is
derived from real-world test and experimentation. It also allows use of
data generated by other simulaticas or in a master facility. Thus,
uniformity of testing can be guaranteed.

Multiple scenarios can be structured and stored for use with single
or multiple architectures. Thus, trade-offs on scenario sensitivity can
be easily performed.

Consistency checks of a scenario definition with an architecture
are provided automatically by PAES.

The designer specifies the simulation run to be performed in the
fourth stage of PAES. This interactive stage allows him to easily
modify simulation run characteristics in order to evaluate the
simulation performance itself, or to vary the features being examined.

PAES is structured to provide complete transparency of the
simulation to the designer. He can specify any of the following three
types of reports:

VERAC

lncorporated




A A T i R e

Queue lcading as a function of time; (Inflow to PRIMITIVES
can also be reported).

(2) CPU, bus or resource loading in MIPS, bits, or accesses can
be generated. (Bus and resource loading has not been
implemented yet.) '

(3) Tracers to measure transit time between any two queues along
a specified thread of control flow.

Start times for thread tracers can be specified by initial thread time
and interval between times. This allows a complete history to be

generated of port-to-port response under scenario loading.

3.2 Simulation Run-Time Features

Timing parameters that characterize the simulation are as follows:
The simulation updates the state of the process flow each aT seconds.
Parameter aT is typically 1-10 msecs. A period of 1 msec. to 32
seconds can, at present, be simulated for the total run. Intervals are
now set to 40 x AT. [Intervals are the time-incremen. at which report
blocks are shifted to disk files and scenario hislograms are taken in.

Certain PRIMITIVES and LINKS are denoted oy the operator as
0-delay. These do not effect work unit flow. Thus, structures such as
external accesses and algorithms can be included in the process model,
but need not be considered in the simulation run if they are not
appropriate for a particular design approach. This is particularly
appropriate to memory structure modeling where external memory devices
may or may not be used. Thus, the delay associated with external memory
access may be zero. A PRIMITIVE or LINK is also set to O-delay
(default) if the delay imposed is typically very small. Warning flags
are set if this condition occurs during a simulation run.




The simulation moves work units through one PRIMITIVE and one LINK,
at most, each aT interval. Thus, nonzero delay primitives introduce a
minimum delay of AT to each work unit flow.

During each aT increment all operating system, bus protocol, and
resource access algorithms are updated, giving a fully dynamic model of
these processes.

Also, during each aT increment reports for loading and response are
updated giving a complete view of the evaluation of the process. A
special feature allows measure of work-unit-inflow/aT-increment as well
as loading/aT-increment for the PRIMITIVES.

Port-to-port response time measurement is accomplished by tracking
a tracer work unit through a thread that has been specified by the
operator. Tracers are updated each AT increment. The work unit traced
is either one that is available in the starting gueue (from scenario
evolution) at start time or is a pinch of work unit (.0l wu) added by
the tracing procedura. Traces can be specified to occur every few
increments to create a history of port-to-port response time as
illustrated in Figure llc.

3.3 Report Generation Features

VERAC has emphasized providing ease of designer-access to PAES A
capabilities. This is reflected in the availability of output data for
the designer. Raw data is stored by the simulation on report blocks on
disk. The report program accesses and manipulates this data to present
araphs of desired performance features. This data is presented to the
user on a graphics display terminal. The user can vary the presentation
and then call for a plot on a flat-bed plotter. Figure 11 presents
example reports.

A1l warnings generated during the simulation run are presented to
the user on-call during the report/evaluation phase.




. ywﬁ
4.0 SUMMARY

PAES provides a user with a processor: architecture evaluation tool
that is designed for great flexibility and user convenience.

PAES provides a vehicle for consistent process definition. Process
definition is easily structured into a methodology (PAEM) that provides
visibility and review to the process definition (i.e. statement of
problem). The PAES format of LINK/PRIMITIVE representation with
algorithms and accesses clearly denoted, provides a basic reference or
context within which related design and evaluation teams can develop a
concensus statement of what neecs to be accomplished by the system.

PAES provides a method of specification review or generation.
Specification Yimits can be implemented in a pseudo-architecture on the
process. Specific architectural elements (processors, memories, etc.)
can be included in this model. Simulation runs indicate performance
features implicit only in the specification.

Multiple architectural approaches can be easily specified and
tested against the basic process. Trade-off and sensitivity analysis
are, thus, easily accommodated.

Multiple scenarios can be tested against 2 given architecture to
evaluate sensitivity of the structure to this variation. Scenario input

sources can be analytic or histogram models or externally provided data
files.

The user can model key features of interest to great detail - at
his option. Features amenable to this are: Operating system models,
network protocol control models, resource access models, schedulers, and
scenario inputs.

Incotporated




A1l internal queues can be examined by the user. All thread
transit times can be examined by the user. A1l resource loading
(operating systems, bus controller*, and resource access controllers*)
can be monitored. '

The input and output of PAES is directed toward user convenience.
Databases are constructed using interactive editors especially
structured for each database. Output formats can be generated, viewad
on a display, and plotted if desired. Thus, the user can move rapidly
through analysis and design of a complex system.

*to be implemented




RAC

Appendix C
Detailed Architecture Evaluations




e s B —n e ¢ o oY i SAL - a . .- -_—— . - P

This Appendix provides detailed results of evaluations of data -
processing subsystem architectures. The architectures evaluated are:

(1) Centralized,
(2) Thread, and
(3) Hybrid.

These architectures are described in detail in Section 4.0 of this
report.

Each architecture was evaluated for two scenarios:

(1) single-spike, and )
(2) double-spike. ]

These scenarios are described in Section 3.0.

The process that is executing on these architectures is described
in overview form in Section 3.0 and in complete detail in Appendix A. !

The simulation tool PAES was used to provide the evaluation. This
tool aad the methodology PAEM of which use of PAES is a part is
described in overview form in Section 2.0 and in further detail in
Appendix B.

The evaluation results presented here consist of cpu utilizations \ j
for computing "nodes". In the Centralized Architecture, there is a '
single node, CENTRAL.

In the Thread Architecture, there are nine computational nodes, as
follows:

RRA Radar return assimilation

MACRO Radar macro scheduling

MICRO Radar micro scheduling

sV S/V returns processing
c-2




D AL

m

11 Angle group (Track Initiation) returns
processing

0700 Object track and discrimination

REDUND Object correlation

1P Intercept planning

IC Interceptor guidance and control

In the Hybrid Architecture, there are four computational nodes, as

follows:
RRA Radar return assimilation
MACRO Radar macro scheduling
MICRO Radar micro scheduling
AGGPRO Aggregate processor, representing the

set of THREAD processors performing
all other functions
The results presented in the following are organized as follows:

Centralized Architecture

CENTRAL node, single-spike scenario: Figure C-1
CENTRAL node, double-spike secnario: Figure C-2

Thread Architecture
Each of nine nodes, single-spike scenario: Figures C-3 to C-11
Each of nine nodes, double-spike scenario: Figures C-12 to C-20
Hybrid Architecture

AGGPRQ node, single-spike scenario: Figure C-21
AGGPRO node, double-spike scenario: Figure C-22

Note that the remaining three Hybrid Architecture nodes - RRA, MACRO and
MICRO ~ coincide with three of the Thread Architecture nodes.

Q@UERas -

——— - - - . - - . . '

" ——




P

R —

L e s — e - e e e e n G M MM s At v . A s M - ———————

Each figure consists of a pair of plots. The first presents
“Sample Values", each of which is the loading measured over the 2 ms
integration step interval used in PAES. The second presents “Average
Value Over An Interval®. These values are averages over a 60 ms
interval. The averages represent cpu utilization where a modest
queueing of work units is involved, and therefore are more indicative of
Cpu requirements.

c-4




*3pON (BUIUD) ©24N3IIFLYDAY PIZL|BAJUI)

23S NI 3MWIL
2l 8 v 0
——d . | | I
0
ﬁm—
- 0E
IVAYIINT NV 3IA0 INTYA IOVYH3AV t 6P

0jueuddS 9YLds-aLbuts

(SdIW) NOILVZITILR Nd2

el

-2 3unby4

J3S NI 3WIL

8

v

INTA 37dWVS

ﬁmp

- Ot

&1

(SAIN) NOILYZITILN NdD

c-5

VERAC




USRS

.muoc A<zhzuu .m;:»umu_:us< va_pm;ucuu

23S NI IMIL
el g 14 0
—l i l O
g 6L
- Ot
- G
TVAY3IINT NV H3IA0 S3NTVA 39VY3AY

C_.c.ﬂ:c.\

(SdIW) NOILYZITILN NdD

+

c~¢.kg
*2-0 d4nb4
J3S N1 3WIL
2l 8 b 0
1 Il [} Q
- =1
)
1
—.’.. = 0¢
- Sp
SINTYA I1dWYS

(SdIW) NOILYZITILA NdD

C-6




oL4eudds 3Lds-aLbuig
“3pON WYY ¢24n3D33LYdJ4y peduy) "€-) 3unbig

935 NI 3IWIL 33S NI WIL
2t 8 v 0 2t 8 ')
doeen  — B U ;| et e el
I ffre sy
815 i B ETARN
Mo TR R St
\ t T
. i 1
S Il
—
~
>
v =y
[}
=
ww.om
R
TVAUIINI NV ¥3A0 SINWA 3ovyday | ¢! SINTVA I1dWYS

F°0

- 80

!

(SdIW) NOILYZITILN NdD

c-7

QYERAS




T

olLJeudds ayrdg-a|buig
‘3pON QYOVW 3un3oa3tyddy peasyy p-) aanbiy

23S NI 3WIL
4! 8 14 0
RIS S F l 0
Jz#?g
tst
0°¢
R
IYAYIINI NV 43A0 SINTVA I9VH3AY

(SAIW) NOILYZITILN NdD

938 NI WIL
el 2 v 0
1 'l y TN . o
61
[
0°¢
sanWA Tdnvs [57

(SdIW) NOILVZITILN NdI




ot4eudds aypds-abuis
*3PON QYIIW ‘34n3D33LYd4y peasyy "G-) 34nbiy

23S NI 3WIL 23S NI Il
'A 8 R 0 2l 8 1 0
S SRS (PRI NP POS 0 —t - | 1 0
- w_ FERNITN g
wﬂ~ﬂ : %w
i i
(] { & =~ .
e — M0l < ,
< [~
~ -
=) ~ :
5 5
3 = ﬁ ]
= 02 =
2 ")
2z 2
ﬁo.m +0° €
IWAYILINI NV ¥3A0 S3INTVA 39VH3AY ' S3NTVA I1dWYS

QYERRS




TR R N

X QLT ¢ g

014RU92G 3yLdg-abuts

“3pOU AS *34N39IYOLY PRBUY] *9-3 4nbi4
935 NI JMIL 23S NI 3WIL
21 8 b 0 A 8 ¥ 0
} 5 ] o 1 I . | o
. (=]
gL 2 6L
[ g
-
=
~
>
3
(=)
-
F0°¢ Mw F0° €
el
A4
WAYILNI NV ¥3A0 SINTYA 39wy [ 57 sanTyA 3dwys [ 57

(SAIW)NOILYZITILN NdD

c-10




otJaeuddg 3ytdg-3afburs
300U [ “34Nn1I3JLYJJAY peddyy  “z-) 3unbid
335 NI 3WIL J3S NI 3WIL
2t 8 v 0 A\ 8 v 0
i 1 1 0 L -4 1 0

g2 A
(]
-
Long
[ang
T
o
~
>
=

; -0's S 0°'S
=
5
L

X st

TWAYIINI Nv ¥3A0 S3NTVA I9VHIAY SINTIVA I1dWYS

(SdIW) NOILYZITILN AdD
L-1l

QYERRS

e



S sl o e A O, Wl $ 3BT 4

e TS SR s A

v

TAYILNI NV ¥3A0 INTVA JOVH3IAY

23S NI JWIiL
2l 8 v 0
_ "t 1 L0
T
ﬁwp
ﬁvm

F 9t

Maaatin | r—=" e = |

oLAeUddS LdS-3|buLls
‘3pON Q010 ©34n3083LYd4y pedayy ‘8-J 3unbyy

(SdIW) NOILYZITILN Nd)

J3S NI 3WIL
al 8 14 0
4 4 A4

T i .

SANTVA 31dWYS

-2l

Fbe

" 9€

(SdIW) NOILYZITILN NdD

T——




0taeuads axLdg-aibuis

3pou ONNQIY ©24n3037 LYoy peauyl 6-) dunbiy
23S NI IWIL 23S NI 3WIL
zl 8 v 0 21 8 v 0
4 : ;—u TYPL T O -4 - 4 it o
K | 4
s &
.m
e£'E 9 FEE°¢
[ g
[ el
—
=]
~
T
-
o
= L 4979
- 99 =
=
e
- 00l
TWAYIINI NV ¥3A0 3nVA 3ovyaay [ 0Ot SINTWA ITdWVS |

(SdIW) NOILYZITILN ndD

VR

L-13

QYERAS




IR

J3S NI MIL
et 8 R
-1 -\ —d-
TIrITYgaMY

IVAYIINI NV ¥3A0 3NTVA IOVHIAV |

Oi4eU3IS ytdg-a|buls
‘3pOU Q] “a4Nn31d331Yd4y peadyy ‘0(-~) 34nbiyg

0L

67 L

(SdIw) NOILYZITILN NdD

Al

]

33s zu.uzuh

8

SINTYA ITdWYS

F0° L

ﬁm.p

(SAIW) NOILYZITIIN NdD




935 NI IWIL
21 8 v 0
e nde - [ .L-n. o
—u
x 'm
m
_ﬁ ,
b
L]
- 6
WAYILNI NV ¥3A0 3NTVA 39WHIAY

otaeudd§ ayids-aLbuts
3pON DI “34n30931YydAy peauyl | (-] 34nbi4

el
——de

’

33S NI 3WIL

8
-

(SdIW) NOILYZINILN Ndd

=gty

U

SINTvA

3TdWYS

¢

6

(SAIW) NOILYZITILN NdD

veRac

C-13




N ! : P N £ _ '
oj4eUddS 1dg-ajqnoQ

‘9pou yYy. ‘aun3daliyday pesdyl z)-) 3anbiy

J3S NI 3WIl S I35 NI 3IWIL

TR
oY
-y .
—
b
=
e - s T

(SdIW) NOILYZITILN NdD
(SAIW) NOILYZITILA ndI

TVAYBLNI NV ¥3A0 SINTVA I9VHIAY SINTYA 3 1dWYS




i 0L4RU3IS 3y tdg-aiqnoq
‘9pou QYIVW ‘94n3IBILYdLY pradyl g(-) adnby4

73S NI JWIL 23S NI 3WIL
zL 8 b 0 mp M.w L
L 1 - L O _ _‘ _ ,
T 4
¢ A
C. C;m pt /
o _:: o T
-5TL 2 ps
3 S 0
= = _l
— = "” ' a
’ = =] 0
= = m
- 0°¢ \.Wl \MI m
: 3
- m.¢ 5 m.¢ v
TVAYILNI NV ¥3A0 SINTVA 39VHIAY SINWA I1dWYS

Q YERAS




: R A o Ty T
otJeudds ayjds-aiqnog
‘apou QYIIW €2un3ddyduy peauayy “pt-J duanbid

73S NI 3WIl 73S NI 3IWIL
el 8 y 0 A 8 . 0
1 4 1 0 ) ., 0
il
w_:ﬁ____..;__._g._.. PN A u._
-:.2:..:;::;.._.}3 |
: ™ J 3
H I - .w “ w L1
3 )
n ? o
~ .
2 —cz
F2 = n 2
3
b m f M
IVAYIINI NV ¥3A0 S3NTVA 39V33AY S3NTVA 3NdWvS

(SdIw) NOILYZITILN NdD




oL4eudds yds-ajqnog
‘ApuU AS *9uN3OAILYdAY peaayl °GL-) aunb 4

[ P

73S NI IWIL 23S NI JWIL
21 g b 0 el 0 p 0
] } (1 qu o i ) 1 °
T
I L o L ™ ¥
] . t i
c <
c < *
= = *
= e W o
S 0 >
h - > .
= = ;
b= N m - N m m
= = |
3 3
1
i € SINTVA 31dWVS [ € !

WAYILNT NV 43A0 SINTVA IOVYU3AY

QIERRT




ojJ4euads ayyds~ajqnog
‘3pouU [i *aun3dAIJYo4y peauyl 9= a4nbig

J3S NI 3WIL

J3S NI 3WIL

e e ————

(SdIW) NOILYZITILR NdI

TYAYILNI NV ¥3IAQ SINTVA JOVH3AY

M
__

el L

, ——— e b —

(SJdIW) NOILYZITILN NdD
c-20

S3NTVA 3dWYS




014eua3s ayrds-ajgnog
‘apou Q010 34n30331Yduy peauyl

335 NI 3WIL
2l 8 b 0
| 4 1 o
Ny,
- ¢l
b2
IAYILNT NV d3A0 SINTYA IOVY¥3AY t of

(SAIW) NOILYZITILN AdD

“L1-) au4nby 4

J3S NI 3WIL

S3ANTVA ITdWVS

- el

- ¥e

9¢

(S4IW) NOILYZITILN NdD

QEnas

——— e e e




‘ S T B G S T S

1 1

0LJaeuaddg mem..o.S:oc
‘0pou QHNGIY ‘04n3IDILYdLY PRIyl °g{-I d4nitd

935 NI IMIL 335 NI IWIL
¢ ) M 0 2t B v 0
444‘4&.&@ ) O |
4 ;
| 1
1
;
(2] o ~—
-EE°E & - E6'€ & M
S S -
g : |
2 e
-L9°9 = L/9°9 =
e 3
WAYIINT NV ¥3A0 SInTVA 3ovuaay | OOt SINTYA ITdWYS - 0°01

e a




oLJaeuads ay1ds-algnog
“3pON dI ¢84n3033LUdAY peaLYL 61D 34nbi4

23S NI ImWIL 73S NI WL
2t 8 y 0 2L g v
1 i i o 1 L. -
S mé_ il
. ¢
ﬁp
_._,5
rs 9
< e
< i)
= L
L ] W il
- K i}
N N
—~ At
3 : *h
001 = E
= il Wl
i~
&

IWAY3LNT NV ¥3A0 SINTVA IOVH3AV G-y
SINTVA I1dWVS

ol e

(SdIW) NOILVZITILN Nd)

osnted
——

VERAC

o




1

" ofaeusrs  as-a{qnog
‘apou 9] ‘aun1daliyday pesayl ‘02-) 4nbi4

935 NI JWIL 73S NI IMWIL
2t 8 ¥ 0 2l 8 b 0
1 1 1 Q 1 ! 4 ﬁ& o A
.w— l
] ]
- € m [ & M
S S L
= = |
~
5 5 3
o o o
= =
F 9 -9
= ] =
: v = nl . =
. v L
R 6
WAYILNI NV ¥3A0 SINTVA 3OVHIAV 6 SINIVA 31dWVS i




0142UadS %1dS-3|buts
“3pON ONdDOY ‘34n32831yddy PLAGAH " [2-) 34nbi4

935 NI 3WIL 33S NI 3WIL
2t 8 b 0 2l 8 b 0
] b | o i 1 1 o
o
. o
L r Gl
[ams
b |
=
P>
o |
=)
=
FoE = F o€
A
- Gb - SY
WAYIINI NV ¥3A0 SINTVA 3OVHIAY SINWA I1WYS

(SdIW) NOILYZITILM NdD

QYERAS

c-25

a_




——

S N A

0142UIIS 34tds-a(qnog
€3pou QU4IIY d4NIOVILYIAY PLUQAH  “22-) 34nbi4

J3S NI 3WIL
A 8 14 0
- } - | O
el S
c
—
=
~
>
—
o
=
b2~
=
S
- 9¢
IVAYILRI NV ¥3A0 S3INTVA 39vy3AV

335 NI IWIL
Al 8 v 0
I ' 1 . c
. .IN—
e A 0 LG
il
AL Lt
m“q
] w._: ~ 42
)
- 9¢
SINTVA IdWYS

(SdIW) NOILYZITILN nNdD

c-26




QYERAS

Appendix D
Cost Summary

|
)




]

VERAC No. 80-22
BMDSC

Contract No. DASG 60-80-C-0017

Recap as Invoiced

Hours Cost Total Billed
Direct Labor:
MTS II1 1527
MTS I 551
Subtotal: $37,209.00
ooc's: o
Materials 7323
Travel 2454
Subtotal: $£9,777.00
Overhead: ' $44,651.00
Total Direct Costs and Overhead: $91,637.00
Fee: 5 8,247.00
Total Invoiced: $99,884.00

Recap as Contracted

Hours Rate Total Cost
Direct Labor:
MTS 111 1527 $55 .48 $84,719.00
MTS 1 551 $27 .52 $15,165.00
Total: 399,884.00

incorporated

-l







